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Abstract

In this PhD thesis, we investigate the lambda-structure of geometric symmetric powers
in both the unstable and the stable Al-homotopy category of schemes over a field.
We also establish a comparison between categoric, geometric, homotopy and projector

symmetric powers in the rational stable Al-homotopy category of schemes over a field.

ii



iii



Contents

Contents

|Acknowledgement|

Introductionl

[L Categoric and homotopic aspects|

[1.1  Rudiments of Model categorieg| . .

[1.1.2  Cellular complexes| . . . . . ... .. ... ... ... .......

[1.1.3  Cofibrantly generated model categories|. . . . . . . . .. ... ..

|1.1.4 Homotopy categories|

[1.2 Properties| . . . . . . . . .o
[1.2.1  Quillen tunctors| . . . .. .. .. .. ... . L.

[1.2.2  Simplicial model categories|

[1.2.3  Homotopy colimits and limits| . . . . . . ... ... ... .....

[1.3  Triangulated structures on model categories| . . . . . . . ... ... ...

[1.3.1 Cofibre and fibre sequences|

[1.3.2  Pre-triangulated structure on homotopy categories| . . . . . . . .

[1.3.3 Triangulated structure on homotopy categories| . . . . . . .. ..

1.4 Symmetric spectral . . . . . ...

[1.4.1 Restriction and corestriction on categories| . . . . . . . . ... ..

[1.4.2  Symmetric sequences|

[1.4.3  Definition of symmetric spectral . . . . . . . .. ... .. ... ..

[1.4.4  Model structures on symmetric spectra] . . . ... ... ... ..

|2 Motivic categories|

2.1 Simplicial presheaves and sheaveg| .

[2.1.1  Simplicial presheaves|

[2.1.2  Standard model structures on simplicial presheaves| . . . . . . . .

iv

ii

vi

ix

xiii

N = =

12
14
19
20
22
25
28
28
35
38
44
45
47
53
56



2.2.1 Radditive functorsf . . . . . ... ... Lo 69
222 A-closed classesl. . . . . . ... oo oo 86
[2.2.3  Model structure on simplicial radditive functors|. . . . . . . . .. 96

[2.3  Simplicial Nisnevich sheaves| . . . . . . . . . .. .. ... ... ... .. 101
[2.3.1 Admissible categories] . . . . .. .. ... L. 101
[2.3.2  Simplicial sheaves on >,-schemes| . . . . . . . . ... ... . 108
[2.3.3  Geometric symmetric powers| . . . . . . .. ... 111

[2.4  Stable motivic category| . . . . ... oL 114
[2.4.1  Rational stable homotopy category of schemes| . . ... ... .. 116
242  The motivic Hurewicz functor| . . . . . .. ... ... ... ... 117

I3 Geometric symmetric powers in motivic categories| 119
3.1 Categoric symmetric powers| . . . . . . . . . . . . . ... 119
[3.1.1  Pushout-products| . . ... ... .. ... ... ... ... ... . 120
8.1.2 Kiunneth towers|. . . . . . .. ... oo 125
[3.1.3  Symmetrizable cofibrations| . . . . . ... ... 134

[3.2  Geometric symmetric powers in the unstable set-up|. . . . . . . . .. .. 135
B.21 Kunnethruled . ... ... ..o oo 135
3.2.2 Kinneth towersl. . . . . . . .. ... oL 144
13.2.3  Geometric symmetric powers ot radditive functors| . . . . . . .. 149

[3.3  Geometric symmetric powers of motivic spectral . . . . . ... ... L. 150
B.3.1 Constructionsl . . . . . . . . . . . ... 150
3.3.2 Kiunneth towers|. . . . . . . .. .. Lo oo 158

[3.4  Special symmetric powers| . . . . .. ... oL 160
[3.4.1  Symmetric powers of a point: (Galois extensions|. . . . . . . . .. 160
[3.4.2  Symmetric powers of a double point| . . . . . ... ... ... .. 164
13.4.3  Symmetric powers of the athne line|. . . . . . . . ... ... ... 167
[3.4.4  Symmetric powers of the athne 2-dimensional space|. . . . . . . . 169

4 Lambda-structures in motivic categories| 171
4.1 Unstable set-up| . . . . . . . . . . . 175
[4.1.1 A morphism of lambda-structures] . . .. ... ... ... .... 177

4.2 Stableset-up| . . . ... 182
4.2.1 A morphism of lambda-structures| . . ... .. ... ... ... 185

4.3 Comparison of symmetric powers| . . . . . . . . . . .. ... 187
4.3.1 Formalism of transfersf . . . . . .. ... ... ... 188
4.3.2 Main theorem|. . . . . . .. .. Lo 194



|Bibliography|

Index]

vi

198

199

205

210

214



vii



Acknowledgement

I would like to express my sincere gratitude to Vladimir Guletskii for his kind advice
and help throughout my career as a graduate student at the University of Liverpool. 1
am grateful to Paul Ostveer for accepting to be the External Examiner and to Nicola
Pagani for accepting to be the Internal Examiner. I would also like to thank Jon Woolf
for interesting mathematical discussions. I thank my current and former officemates for
their friendship: Anwar Alameddin, Nada Alhabib, Oliver Anderson, Kalyan Banerjee,
Alena Jassova, Andrew Monaghan, Jason Van Zelm and Stephen Worsley. Likewise,
I thank my colleagues of the math department: Demetris Avraam, Ashley Brereton,
Jenna Birch, Daniel Evans, Vasileios Fragkoulis, Katy Gallagher, Humberto Godinez,
Stewart Haslinger, Ewan Johnstone, Joseph Leedale, Poj Lertchoosakul, Liangang Ma,
Heather Riley, Stephen Nand-Lal, Hasan Sonmez and Ryan Wissett. Special thanks
are extended to my family for their emotional support. Many thanks to the EPSRC
for generously funding my PhD project. Above all, I gratefully acknowledge God for

showing me his marvellous lovingkindness.

viii



ix



Introduction

In motivic theory, symmetric powers are an important tool that encode (co)-homological
information of motivic spaces. Generally speaking, motivic spaces depend on two co-
ordinates: one simplicial coordinate and one geometric coordinate, i.e. the category of
schemes. This suggests the possibility of defining symmetric powers of motivic spaces
with a different approach than the categoric ones. In [40], Voevodsky proved a motivic
version of the Dold-Thom’s theorem. The symmetric powers considered in his work
are what we call geometric symmetric powers, as they are induced from the geometric
coordinate.

An admissible category E] is a subcategory of schemes over a base field, containing
the affine line and it is closed under finite products, coproducts and quotients of schemes
by finite groups. A typical example of an admissible category is the category of quasi-
projective schemes over a field. Geometric symmetric powers are left Kan extensions of
the symmetric powers of schemes considered in an admissible category [40]. Categoric
symmetric powers are the quotients of Cartesian powers of motivic spaces by the action
of symmetric groups. A A-structure on a model category, or on its homotopy category,
is a categoric version of a A-structure on commutative rings. As functors, categoric
symmetric powers preserve Al-weak equivalences, and their left derived functors provide
a A-structure on the pointed motivic homotopy categories of an admissible category,
[13]. The aim of the present work is to develop a systematic study of symmetric powers
in the unstable and stable homotopy category of an admissible category over a field k.

Our first goal is to prove that geometric symmetric powers provide a A-structure
on the pointed unstable motivic homotopy category as mentioned above. For this pur-
pose we first consider the projective cofibrant resolution on the category of simplicial
Nisnevich sheaves on an admissible category, which is deduced from the small object
argument applied to the class of morphisms resulting by multiplying representable
sheaves with the generating cofibrations of the category of simplicial sets. This allows
us to deduce that every motivic space is Al-weak equivalent to a simplicial sheaf, given
termwise by coproducts of representable sheaves, as it was shown by Voevodsky in the
context of radditive functors, see [40, 41]. The key point is that geometric symmet-

ric powers of morphisms of simplicial sheaves that are directed colimits of termwise

! f-admissible in [40].



coprojections have canonical filtrations, called Kiinneth towers, and they provide a A-

structure on the motivic homotopy category. This gives the following result (Theorem

in the text):

The left derived geometric symmetric powers provide a \-structure on the pointed
unstable motivic homotopy category of an admissible category of schemes over a
field.

On the other hand, in both the unstable and the stable case, there is a natural
transformation from the categoric symmetric power Sym” to the geometrical symmetric
power Symg. Let E be a functor from an admissible category to the unstable (or
stable) A'-homotopy category on an admissible category. An interesting problem is
to investigate whether the canonical morphisms J% : Sym"E(X) — SymgFE(X) are
isomorphisms for all schemes X in an admissible category. It turns out that, in the
unstable case, ¥’y is not always an isomorphism, for example this is the case when X
is the 2-dimensional affine space A% and n = 2, cf. Proposition Our second goal
is to show that these canonical morphisms become isomorphisms in the rational stable
Al-homotopy category of schemes. However, the same result is not true in the stable
A'-homotopy category of schemes with integral coefficients (see Remark [3.3.14)).

Let us explain our approach towards the second goal. The rationalization of a
stable homotopy category causes the loss of information of torsion objects. However, it
allows us to think of a rational stable homotopy category as a derived category of chain
complexes, and the latter is, philosophically, more accessible to understand. Morel
predicted that rational stable A'-homotopy category of schemes is equivalent to the
triangulated category of unbounded motives with rational coefficients, cf. [29].

An important ingredient to be used in this text is the notion of transfer of a mor-
phism. This notion appears naturally in algebraic topology. For instance, let us consider
a positive integer n and an n-sheeted covering 7: X — X. This covering induces a
homomorphism of cohomology groups 7*: H"(X;Z) — H" (X, Z) for r € N. A transfer
for 7* is a homomorphism tr: H"(X;Z) — H"(X;Z) such that the composite tr o 7* is
the multiplication by n. Voevodosky proved the existence of transfers for morphisms of
gfh-sheaves induced by finite surjective morphisms of normal connected schemes. As a
result, this implies the existence of transfers for morphisms of gqfh-motives induced by
such finite morphisms of schemes, see [39]. We use this notion in order to get transfers
for the morphisms in the rational stable Al-homotopy category which are induced by
the canonical morphism X" — X" /¥, for X a quasi-projective scheme.

Let T be the projective line P! pointed at oo, and let Eg be the canonical functor
from the category of quasi-projective schemes over a field k to the rational stable Al-
homotopy category of T-spectra. We denote by Sym7 the nth fold categoric symmetric

power on the category of symmetric T-spectra. Since the rational stable homotopy
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category of schemes is pseudo-abelian, one can use projectors in order to define pro-
jector symmetric powers, denoted by Symp,. As a result, we obtain that if —1 is a
sum of squares then the categoric, geometric and projector symmetric powers of a
quasi-projective scheme are isomorphic in rational stable A!-homotopy category. More
precisely, our result is the following (Theorem in the text):

Let k be a field such that —1 is a sum of squares in it. Then, for any quasi-

projective k-scheme X, we have the following isomorphisms

LSymiEg(X) ~ Egp(Sym"X) ~ Symg, Fo(X).

Another type of symmetric power is the nth fold homotopy symmetric power of a
symmetric T-spectrum, defined as a homotopy quotient of the nth fold smash product
of this spectrum by the symmetric group ¥,; we denote by Symj ;- the corresponding
endofunctor on the category of motivic symmetric T-spectra. There are natural trans-
formations Symyj  — Sym7p for n € N. It turns out that they induce a morphism of
A-structures on the category of symmetric T-spectra, and it becomes an isomorphism in
the stable homotopy category, [12]. Consequently, for a quasi-projective k-scheme X,
the nth fold homotopy symmetric power Symy, 7 Eg(X) is isomorphic to LSym’ Eg(X).
Thus we get a comparison of four types of symmetric powers in the rational stable Al-
homotopy category.

In this thesis, we construct a stable geometric symmetric power Sym;T having the
property that the composite Symy o X7 is isomorphic to X7° o Symy, where X7 is the
T-suspension functor, see Section for a detailed exposition. This property allows
to deduce that Symg’T preserves stable Al-weak equivalences between T-spectra that
are the T-suspension of nice motivic spaces, but this fact does not suffice to deduce the
existence of the left derived functor of SymZ’T for n > 1. This problem will remain open
in the text. However, there is a natural transformation Symy. — Symy , for every n €
N. Assuming the existence of left derived functors of the stable geometric symmetric
powers, we show that the endofunctors LSymZ}T, for n € N, induce a A-structure on
the stable motivic homotopy category (Theorem and the natural transformations
LSym7p — LSymy p induce a morphism of A-structures (Theorem .

Although in this thesis we are limited to work only over a base field, our con-
structions might be generalized to a broader class of nice base schemes. It would be
interesting to investigate how to construct categoric (resp. geometric) symmetric pow-
ers in a more general framework, namely on the premotivic categories (resp. premotivic
categories with geometric sections) defined in [6]; but we leave this question for a future

project.
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Organization of the thesis

In Chapter 1, we recall useful tools of homotopical algebra. We also outline important
results on the category of symmetric spectra developed in [19]. In Chapter 2, we give a
survey of both the unstable and the stable A'-homotopy theory of schemes over a field,
[30]. Here, we also study simplicial radditive functors, [41]. Chapter 3 contains the
essential part of the thesis. In it we construct Kiinneth towers of geometric symmetric
powers of motivic spaces in both the unstable and stable set-up. In Chapter 4, we
present our main results: Theorem [1.1.4] (for the unstable case) and Theorem
(for the stable case).
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Chapter 1

Categoric and homotopic aspects

This chapter contains preliminary materials of abstract homotopical algebra which are

the basis and foundation of the next chapters.

1.1 Rudiments of Model categories

According to D. Quillen, a “model category” means a category of “models” for a ho-
motopy category. The original reference for model categories is the well known book
titled “Homotopical algebra” published in 1967, see [32].

1.1.1 Preliminaries

In this section, we recall basics on model categories, their fundamental properties, such

as, lifting properties, retract arguments, etc.

Definition 1.1.1. Let % be a category. We denote by Map % the category whose
objects are morphisms of 4 and whose morphisms are commutative squares. The

domain and codomain functors
dom , codom : Map ¥ — €,
assign a morphism in %, respectively, to its domain and codomain, that is,
dom(X LY)=X, codom(X LY)=Y.

If a commutative square

YI




is a morphism in Map % from f: X — Y to f': X’ — Y’, then we set

XX XX
dom fl if’ = (X —25X'), codom fl J{f’ ::(Yi>Y’).
Y —Y’ Y —Y'
P »

Definition 1.1.2. A functorial factorization on a category € is a pair («, ) of functors
a and B from Map % to itself, such that

(1) dom o« = dom,

(2) codom o 3 = codom,

(3) codom o« = dom o f3, and
(4) foa=idmape-

In other terms, for every morphism f in € we have a commutative triangle,

dom «(f) = dom f codom 3(f) = codom f

\/

codom «(f) = dom B(f
or simply, a(f) and B(f) are composable morphisms, and f = 8(f) o a(f).

Definition 1.1.3. We say that a morphism f in € is a retract of a morphism g in ¢
if f is a retract of g as objects in Map %, in other words, there exists a commutative

diagram of the form

A C A
f g f
B D B

where the horizontal composites are identities.

Example 1.1.4. If p is the retraction of a morphism s: A — B in a category [26] p.
19], then the diagram
A—> B -4

s sop s

B B B

displays s as a retract of sop.



Definition 1.1.5. Suppose that i: A — B and p: X — Y are two morphisms in %.
We say that ¢ has the left lifting property with respect to p, or p has the right lifting

property with respect to i, if for any commutative square,

A X
7 p
B Y

there exists a morphism ¢: B — X, called lifting, such that the following diagram

A X
0

7 p

B Y

is commutative.
Definition 1.1.6. Let I be a class of morphism in a category %. A morphism is called:

(1) I-injective, if it has the right lifting property with respect to every morphism in
I. We denote the class of I-injective morphisms by [I-inj.

(2) I-projective, if it has the left lifting property with respect to every morphism in
I. We denote the class of I-projective morphisms by I-proj.

(3) I-cofibration, if it is a morphism in (/-inj)-proj. We denote the class of I-
cofibrations by I-cof.

Remark 1.1.7. From the definition it follows that for any two classes of morphisms [

and J, one has the following:
(i) I C I-cof.

(ii) If I C J, then we have two inclusions I-inj D J-inj and I-proj D J-proj. Hence,
one has I-cof C J-cof.

Definition 1.1.8. A model category is a category € provided of a model structure,

that is, three classes of morphisms in %
(1) a class of weak equivalences,
(2) a class of fibrations,

(3) a class of cofibrations,



and two functorial factorizations (a, 3), (y,0) satisfying the following axioms:
(MC1) (limits) € is complete and cocomplete.

(MC2) (2-out-of-3) If f and g are two composable morphisms in ¢ such that two of f, g

and g o f are weak equivalences, then so is the third.

(MC3) (retracts) If f and g are morphisms in % such that f is a retract of g and g is a

weak equivalence, cofibration or fibration, then so is f.

(MC4) (lifting) Trivial cofibrations have the left lifting property respect to fibrations,
and trivial fibrations have the right lifting property respect to cofibrations.

(MC5) (factorization) Every morphism f in ¢ has two factorizations:
f=B(f)ealf),
f=0(f)en(f),

where

(1) a(f) is a cofibration,

(7i) B(f) is a trivial fibration,
and

(791) y(f) is a trivial cofibration,
(iv) 6(f) is a fibration.

Remark 1.1.9. A category may have more than one model structure.

Remark 1.1.10. A model category has an initial and a terminal object, because it
is complete and cocomplete. In fact, its initial object (resp. terminal object) is the

colimit (resp. limit) of the empty diagram.

Example 1.1.11. The Quillen model structure on the category of simplicial sets

A°P Fets has the following structure:
(1) a cofibration is a monomorphism,

(2) a weak equivalence is a weak homotopy equivalence, i.e. a morphism f such that
its geometric realization |f| induces bijections of homotopy groups, see [15 p.
352].

(3) a fibration is a Kan fibration, i.e. a morphism that has the right lifting property
with respect to all horns A"[n] < A[n] for n >0 and 0 <r <n.



Example 1.1.12. The category of simplicial (pre-)sheaves has various model struc-
tures, see Section [2.1.2]

Example 1.1.13. The category of symmetric spectra has a projective model structure
(see Theorem [1.4.30]) and a stable model structure (see page .

Terminology. The initial object of a category will be denoted by @) (sometimes by 0)
and the terminal object by * (sometimes by pt or by 1) .

Definition 1.1.14. Let % be a model category and let X be an object of €. We say
that X is cofibrant if the morphism () — X is a cofibration, and X is fibrant if the

morphism X — * is a fibration.

Lemma 1.1.15 (Ken Brown’s lemma). Suppose that € is a model category and 2
is a category with a subcategory of weak equivalences satisfying the 2-out-of-3 azxiom.
If F: € — 2 is a functor which takes trivial cofibration between cofibrant objects to
weak equivalences, then F' takes all weak equivalences between cofibrant objects to weak

equivalences.

Proof. See [18, Lemma 1.1.12] O

Pointed model categories

Definition 1.1.16. A category with an initial () and terminal object x is called pointed

if the canonical morphism () — * is an isomorphism.

Example 1.1.17. Additive categories are pointed, the zero object is both an initial

and a terminal object.

Let € be a category. We denote
Coi=x 1€

the category whose objects are morphisms * — X of €. As in topology, it is sometimes
denoted by (X, v) an element of %, and call it object X with base point v. From the
definition, it follows that the category % is pointed.
Suppose that € is a category with a terminal object *. For every object X of a
category &, we set
Xy:=X*.

We denote by €’ the full subcategory of %, generated by objects of the form X for
all objects X in . Let us denote by

(D)s: € — C.



the composition of the functor ¥ — %4, given by X — X, with the full embedding
€t — Cx. The functor (—)4 is left adjoint to the forgetful functor U: €, — €,

()4 : € €. U (1.1)

If ¢ is a pointed category, then the functors (—)4 and U define an equivalence of

categories between € and .

Lemma 1.1.18. Let € be a model category. Then, the model structure on € induces
a model structure on €., where a morphism f in € is a cofibration (fibration, weak

equivalence) if and only if U(f) is a cofibration (fibration, weak equivalence) in € .

Proof. Notice that axioms (MC1), (MC2) and (MC3) for %, follow immediately from
the corresponding axioms of €. To prove the lifting axiom (MC4), we give a commu-

tative square in %,

(4,q) (X, z) (1.2)
(B,b) (Y,y)

where i is a trivial cofibration and p is a fibration (the other case is similar). By the

axiom (MC4) on ¥, the square

A X
UG) U(p)
B Y

has a lifting, say £: B — X. We observe that, by diagram chasing, we have £ o b = x.
Hence, ¢ induces a morphism of pointed objects (B,b) — (X,z) which is a lifting
of the square . Finally, let us prove the factorization axiom (MC5). Let (a,f)
be a functorial factorization of ¥. We define a functorial factorization (., x) of
%, as follows. For a morphism f: (X,z) — (Y,y) in €., we define a,(f) to be the

commutative triangle

T a(U(f))ox

X
T codom a(U(f))



and we define f.(f) to be the commutative triangle

a(U(f))ex Y

codom a(U(f)) ) Y

Since B(U(f)) o a(U(f)) = U(f) for every morphism f in %, the pair (o, Ss) is a

functorial factorization of %%. O

1.1.2 Cellular complexes
We start this section recalling some basics on ordered sets, ordinals and cardinals.
Definition 1.1.19.

(1) A preorder on a set is a binary relation that is reflexive and transitive. A pre-

ordered set is a set provided of a preorder.

(2) A partial order on a set is a binary relation that is reflexive, antisymmetric and

transitive. An ordered set is a set provided of a partial order.

(3) A partially ordered set S, say with a order <, is called totally ordered, if every
pair of elements (a,b) € S x S is comparable, that is, a < b or b < a.

(4) A totally ordered set S is called well-ordered, if S has a minimum element, that

is, an element b € S such that b < a for all a € S.

Definition 1.1.20. A preordered set S is a directed set if every pair of elements has
an upper bound, i.e. for every pair of elements a,b € S there exists an element ¢ such
that a < cand b < c.

Example 1.1.21. Totally ordered sets are directed sets, but partially ordered sets are

not necessarily directed sets.

Theorem 1.1.22 (Zermelo’s Well-Ordering Theorem). Every nonempty set can be

well-ordered.

Proof. This theorem is equivalent to the Axiom of Choice. The reader may consult [24]
Th. 5.1]. O

Definition 1.1.23. A set A is called transitive, if every element of A is a subset of A.
Example 1.1.24.

(1) By vacuity, (0 is transitive.



(2) The sets {0}, {0,{0}} are transitive.

(3) The set {{0}} is not transitive, because {} is an element of {{0}} but it is not
a subset of {{0}}.

Definition 1.1.25. A set is called ordinal, if it is transitive and well-ordered by the

set-membership order €.
Example 1.1.26.
(1) 0:=0 is an ordinal.
(2) The sets 1:={0} and 2:={0,{0}} are ordinals.
(3) If « is an ordinal, then o + 1:=a U {a} is an ordinal.

(4) The set {0,{{0}},{0,{0}}} is transitive but it is not an ordinal, because {{0}}
and {0, {0}} are not comparable by €.

Definition 1.1.27. For any two ordinals « and 3, we denote a < 8 to mean that
a € B, and by a < 8 to mean that « € § or a = f3.

Proposition 1.1.28. We have the following statements:

a) Fvery ordinal o is equal to the set of ordinals B such that 5 < «.

If a is an ordinal and B is a set such that B € «, then B is an ordinal.

If a # B are two ordinals such that o C 3, then a € .

d) Let o and B be two ordinals. If f: a — B is an isomorphism of ordered sets, then
a= 0 and f =id.

(e) Let o and 8 be two ordinals. Then exactly one of the following cases holds: o = 3,
a<porf<a.

(f) If A is a set of ordinals, then the union of the elements of A, usually denoted by
sup A or by |J A, is an ordinal.

Proof. See [24]. O

Definition 1.1.29. By the Zermelo’s Well-Ordering Theorem [1.1.22] every set is in
bijection with a certain ordinal. The cardinal of a set A is the smallest ordinal that is

bijective to A. The cardinal of A is usually denoted by |A]|.

Definition 1.1.30. An ordinal « is called cardinal, if |k| = k; in other words, if  is

not bijective to any ordinal strictly less than x.

Remark 1.1.31. Notice that there is no redundancy in Definition[1.1.29|and Definition
. 1.50)



Example 1.1.32.
(1) Finite ordinals are cardinals.
(2) The ordinal w is a cardinal, it is usually denote by Rg.

(3) The ordinal w + 1 is not a cardinal. Indeed, we have w + 1 = w U {w}, hence the
function f: wU{w} — w given by

6+1, iff<w,
f(B) = ,
0, iff=w,
is a bijection, but w is strictly less than w + 1.
Definition 1.1.33. Let s be a cardinal. An ordinal X is k-filtered, if:

(1) it is a limit ordinal, and

(2) it satisfies the following property: if A is a set such that A C X\ and |A| < &, then
sup A < .

Remark 1.1.34. The condition (2) in the previous definition implies that a x-filtered

ordinal is necessarily a limit ordinal.

Definition 1.1.35. An infinite cardinal & is called regular, if it satisfies the following
axiom: for every set A such that |A| < k and for every family {S,}sca such that
|Sa| < K, one has [{J,c 4 Sal < 5.

Example 1.1.36. If « is a finite cardinal, then the countable ordinal w is k-filtered.
Proposition 1.1.37. If k is infinite and successor cardinal, then k is regular.
Proof. See [17, Proposition 10.1.14]. O

Definition 1.1.38. Suppose % is a cocomplete category and A is an ordinal. A M-
sequence in € is a colimit-preserving functor X : A — % in the following sense: for all

limit ordinal v < A, the induced morphism
colim g, Xg — X,

is an isomorphism. The morphism X¢ — colim gy X3 is called transfinite composition

of the A-sequence X.

Definition 1.1.39. Let I a class of morphisms of a cocomplete category % and let k

be a cardinal.



(1) An object A of € is called k-small relative to I, if for all k-filtered ordinals A\ and
A-sequences

Xo—=X1 == Xg—---,

such that every morphism Xg — X3 isin I for 3+1 < A, the induced morphism
of sets

colim g« \Home (A, Xg) — Homg (A, colim g« Xg)
is bijective.

(2) An object A € ¢ is called small relative to I if it is k-small relative to I for some

cardinal k.

(3) Anobject A € € is called small, if it is small relative to the class to all morphisms
of €.

Definition 1.1.40. Let % be a cocomplete category and let I be a class of morphisms
of ¥.

(1) An object A of € is called finite relative to I, if there is a finite cardinal x such

that A is k-small relative to I.

(2) An object A of ¥ is called finite, if it is finite relative to the class of all morphisms
of .

Example 1.1.41.
(1) Every set is small in the category of sets.

(73) In the category of sets, a set is finite (in the sense of Definition [1.1.40) if and only

if it is a finite set, i.e. a set with finitely many elements.

(747) In the category of topological spaces Jop, a compact topological space may not
be small: the space X = {0, 1} with the trivial topology is compact but not small
in Jop. This counterexample was given by Don Stanley (see Errata of [18]).

Definition 1.1.42. Let I be a set of morphisms in a cocomplete category . A
morphism f in 4 is a relative I-cell complex if there exists an ordinal A and a A-
sequence X : A — % such that f is the transfinite composition of X and such that, for
each ordinal 8 with 5+ 1 < A, there is a pushout square

Cp X3
9
Dg Xp+1
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such that gg € I. The class of relative I-cell complexes is denoted by I-cell. We say
that an object A € € is an I-cell complex if the morphism 0 — A is a relative [-cell

complex.

Lemma 1.1.43. Suppose that I is a class of morphisms in a cocomplete category € .

We have the following assertions:

(a) I-inj and I-proj are closed under compositions.

(b) I-inj and I-proj are closed under retracts.

(¢) I-proj is closed under pushouts and I-inj is closed under pullbacks.
(d) I-proj is closed under transfinite compositions.

(e) I-cell C I-cof.

(f) I-cell is closed under transfinite compositions.

(9) Any pushout of coproducts of morphisms of I is in I-cell.

Proof. Each statement follows from the definitions, see [17] or in [I§]. O

Proposition 1.1.44. Let € be a category cocomplete and let I be a set of morphisms
in €. Let k be a reqular cardinal such that the domains of morphisms of I are k-small-
relative to I-cell. Then there exists a functorial factorization (vy,0) on € such that for

every morphism f in €, we can write

f=0(f)en(f)

where v(f) is a transfinite composition of a k-sequence of pushouts of coproducts of

elements in I, and §(f) in I-inj.

Proof. The transfinite induction allows one to construct a suitable functorial factor-
ization, and the regularity property on the cardinal x permits to obtain the required

properties of the factorization, see [17]. O

We following definition is due to D.M. Kan.

Definition 1.1.45. If % is a category and [ is a set of morphisms in %, we say that [
permits the small object argument, if the domain of every element of I is small relative
to I-cell.

Theorem 1.1.46 (The small object argument). Let € be a category cocomplete and
let I be a set of morphisms in €. Suppose that I permits the small object argument.
Then there ezists a functorial factorization (v,9) on € such that for every morphism

fin €, we can write
f=10(f)o~(f)
with y(f) in I-cell and §(f) in I-inj.
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Proof. By hypothesis, every object in dom (/) is small-relative to I-cell, then for every

A in dom (I), there is a cardinal x4 such that A is k4-small relative to I-cell. We

Ri= U KA.

A€dom (I)

consider the cardinal,

Since k4 < k for every A in dom (I), every object A in dom (I) is k-small relative to
I-cell. Hence, by Proposition [1.1.44} there exists a functorial factorization (v, d) on ¢

such that for every morphism f in %, we can write

f=106(f)en(f)

with v(f) is a transfinite composition of a k-sequence of pushouts of coproducts of
elements in I, and §(f) in I-inj. In particular, vy(f) is in I-cell, this proves the theorem.
O

Corollary 1.1.47. Let I be a set of morphism in a cocomplete category €. Suppose
that I permits the small object argument. Then every morphism f: A — B in I-cof,
there is a morphism g: A — C in I-cell such that f is a retract of g by a morphism

which fizes A, that is, there is commutative diagram

A A A
f g f
B C B

where the horizontal composites are the identities.

Proof. See [18], Corollary 2.1.15]. O

1.1.3 Cofibrantly generated model categories

In practice, most of the interesting model categories have a class of cofibrations and a
class of trivial cofibrations that are generated by sets of morphisms in the sense of the

following definition.

Definition 1.1.48. A model category % is called cofibrantly generated, if there are two

sets I and J of morphisms of ¥ such that we have the following axioms:
(1) I permit the small object argument.
(2) J permit the small object argument.

(3) The class of fibrations in € is J-inj.

12



(4) The class of trivial fibrations in € is I-inj.

The set I is called set of generating cofibrations and the set J is called set of generating

trivial cofibrations of €.
Example 1.1.49. In the category of topological spaces Jop, the sets
I={s" 1= D"|n>0},

J={[0,1]""! x {0} = [0,1]" | n > 1}

generate a model structure, see [32], [I8] or [§]. Here, S"~! < D" is the inclusion of

the (n — 1)-dimensional sphere into the n-dimensional unit disc. In A°P.ets, the sets

I = {0A[n] — Aln]|n >0},
J={A"[n] = An]|n>0,0<r<n}

generate the Quillen model structure on the category of simplicial sets, see [32], [18§],
or [11]

Proposition 1.1.50. Suppose € is a cofibrantly generated model category with gener-
ating cofibrations I and generating trivial cofibrations J. Then, the following conditions

are satisfied:

(a) The cofibrations form the class I-cof.

(b) Ewvery cofibration is a retract of a relative I-cell complex.

(¢c) The domains of morphisms in I are small relative to the cofibrations.

(d) The trivial cofibrations form the class J-cof.

(e) Ewery trivial cofibration is a retract of a relative J-cell complex.

(f) The domains of morphisms in J are small relative to the trivial cofibrations.
Proof. See [17] or [1§]. O

The following theorem is known as the “recognition theorem”, which gives us a
necessary and sufficient condition on a complete and cocomplete category to be a cofi-

brantly generated model category.

Theorem 1.1.51 (Recognition theorem). Suppose € is a complete and cocomplete
category and suppose that W is a class of morphisms in € and I, J are two sets of
morphisms of €. Then there exists a cofibrantly generated model structure on €, with
I as the set of generating cofibrations, J as the set of generating trivial cofibrations and

W as the class of weak equivalences, if and only if the following conditions are satisfied:

13



(1) The class W has the 2-out-of-3 property (MC2) and it is closed under retracts
(MC3).

(2) I permit the small object argument.
(3) J permit the small object argument.
(4) J-cell C W N I-cof.
(5) I-inj C W N J-inj.
(6) Either W N I-cof C J-cof or W N J-inj C I-inj.
Proof. See [18, Theorem 2.1.19]. O

The following lemma, due to A. Joyal, has sometimes a practical use, as it implies
the lifting axiom (MC4) of Definition in a category satisfying some axioms of

lifting properties and functorial factorization .

Lemma 1.1.52 (Joyal’s trick). Suppose that € is a category with a class of weak
equivalences, a class of fibrations and a class of cofibrations satisfying axioms (MC1)

and (MC2), and in addition, suppose that one has the following properties:
(1) The cofibrations are stable by compositions and pushouts.
(2) The fibrations have the right lifting property with respect to trivial cofibration.

(3) All morphism f can be functorially factored as f = poi, with p a trivial fibration

and i a cofibration.
Then, the axiom (MCY) is also satisfied for €.

Proof. See [21]. O

1.1.4 Homotopy categories

In topology, the classification of topological spaces up to homeomorphisms is considered
as a difficult problem. However, the notion of homotopy provides a coarser but a clearer
classification of such spaces. The homotopy category of a model category is the category
resulting by inverting the weak equivalences. A generalization to model categories of
the celebrated Whitehead’s theorem asserts that a weak equivalence between fibrant-

cofibrant objects is a homotopy equivalence.

Definition 1.1.53. Let & be a category and let W be a class of morphisms in %.
A localization of € with respect to W is a category €[W™!] together with a functor
v: € — €W such that

14



(1) for every f € W, the morphism ~(f) is an isomorphism, and

(2) if Z is another category and £: 4 — & is a functor such that £(f) is an isomor-
phism for every f € W, then there is a unique functor §: €[W~1] — 2 such that

we have a commutative diagram

Theorem 1.1.54. If € is a model category with a class of weak equivalences W, then

the localization of € with respect to W ezists.
Proof. See [17, Theorem 8.3.5]. O

Definition 1.1.55. If € is a model category with a class of weak equivalences WW. We
denote €[W~!] by Ho% and call it the homotopy category of €.

Let € be a a model category. We denote by %, (resp. €, ¢.yr) the full subcategory
of cofibrant (resp. fibrant, cofibrant and fibrant) objects of €. A morphism f: X — Y
in 6. (resp. €y, G.r) is a weak equivalence if it is a weak equivalence in €. We shall

construct two natural functors

Q,R:¢ — %€,

called cofibrant (resp. fibrant) replacement functor. They are constructed as follows.
For any X object of ¢, we consider the morphism ) — X — . Since % is a model
category, we have two functorial factorizations (a, ) and (v,d), see m Hence,
defining

Q(X):=codom a () — X)

and
R(X):=codomy(X — %),

we obtain a sequence

a(0—X)

0

where
- a(f — X) is a cofibration,
- B(0 — X) is a trivial fibration,
- 7(X — %) is a trivial cofibration, and
- (X — %) is a fibration.

15



In particular, Q(X) is cofibrant and R(X) is fibrant. If f: X — Y is a morphism in

@, we have a commutative diagram

0 Q(X) X R(X) *
!
0 QYY) Y R(Y) *

because «, 3, and ¢ are functors Map 4 — Map %. Moreover, by functoriality, we get
two functors

Q: % —%.,
R:%—)Cff,

called cofibrant replacement and fibrant replacement respectively. We shall denote by

ic: 6. — ¢, and by iy: €y — €, the corresponding inclusion functors. Notice that the

morphisms Q(X) — X, for X in %, induce two natural transformations
Qoic=>idcgc, iCOQ=>idcg,

and the morphisms X — R(X), for X in %, induce two natural transformations

idcgf:>Roif, id(g:>ifOR.

Lemma 1.1.56. Suppose € is a model category. The replacement functors Q: € — .

and R: € — €y preserve weak equivalences.

Proof. For any morphism f: X — Y in ¥, we have a commutative diagram

Q(X) B(0—X) ¥ Y(X —%) R(X)
Q) f R(f)
Y Y Y
Q( ) B(0—X) F(Y =) R( )

where (0 — X),5(0 — Y) are trivial fibrations and v(X — *),y(Y — x) are trivial
cofibrations. Now, if f is a weak equivalence, by 2-out-of-3 axiom, we deduce from the
above diagram that Q(f) and R(f) are weak equivalences.

O

Proposition 1.1.57. Suppose € is a model category. Then the inclusion functors i.

and iy induce equivalences of categories
Ho%¢.; —+ Ho¢. — Ho¥¢

and
Ho%f. — Ho¢y — Ho % .
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Proof. Note that is it enough to show that Ho%4. — Ho%¢ and Ho%¢; — Ho% are
equivalences of categories. Let us prove that the first one is an equivalence of categories.
By definition, the inclusion i.: . — % preserves weak equivalences, so it induces a

functor
Hoi.: Hoé. — Ho ¥ .

On the other hand, Lemmall.1.56|says that () preserves weak equivalences, so it induces
a functor
HoQ@: Ho¥ — Ho%.,

moreover, the natural transformations
Qoi.=idg, ic0Q = idy,
induce two natural isomorphisms
HoQ oHoi. = idpow, Hoi.oHoQ = idyo ¢ -

This proves that the functor Hoi.: 4. — Ho % is an equivalence of categories. Similarly

we prove that Ho ¢y — Ho ¢ is an equivalence of categories. O

Definition 1.1.58. Suppose % is a model category.

(1) For an object X € €, the fold morphism idx Ilidx: X I X — X is defined from

the cocartesian diagram

X

A cylinder object for X is a factorization of the fold morphism idx [ [idx,
X1 X 2 oyl(x) 2 X,

where iy [ ] i1 is a cofibration and p is a weak equivalence.
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(2) For an object Y € €, the diagonal morphism idy x idy: Y — Y x Y is defined

from the cartesian diagram

Y

idy Xidy

Y

A path object for Y is a factorization axiom of the diagonal morphism idy x idy

*

is factored as
Y -5 Path(Y) 28 v x v,

where s is a weak equivalence and pg X p; is a fibration.

Remark 1.1.59. In a model category %, by the factorization axiom, cylinder and path

objects always exist.
In the next paragraphs we give the definition of left and right homotopy.

Definition 1.1.60. Suppose % is a model category and let f,¢g: X — Y be two mor-
phisms in €.

(1) A left homotopy from f to g is a pair (C, H), where C is a cylinder object
C: x 1 x L opx) 2 x
for X, and H is a morphism
H:Cyl(X)—Y,

such that H oig = f and H oi; = g, as shown in the following diagram

0

X

idx [Tidx

i1

18



We say that f is a left homotopic to g if there exists a left homotopy from f to
!
g, it is denoted by f ~ g¢.

(2) A right homotopy from f to g is a pair (P, K) a path object
P: Y -5 Path(Y) %'y x v
for Y, and a K is a morphism
K: X — Path(Y),

such that pgo K = f and p; o K = g, as shown in the following diagram

*

We say that f is a right homotopic to g if there exists a right homotopy from f
to g, it is denoted by f < g.

(3) We say that f is homotopic to g, if f is both left homotopic and right homotopic
to g, it is denoted by f ~ g.

Theorem 1.1.61 (Whitehead’s theorem). Let € be a model category and let X,Y be
two fibrant cofibrant objects of €. Then f: X — Y is a weak equivalence if and only if

f is a homotopy equivalence.

Proof. See [17, Theorem 7.5.10] or [I8, Theorem 1.2.10]. O

1.2 Properties

In this section, we shall recall important properties of model categories and homotopy

categories.
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1.2.1 Quillen functors

Definition 1.2.1. Let %, Z be two model categories.

(1) A functor F: ¢ — 2 is called left Quillen functor, if F is a left adjoint and

preserves cofibrations and trivial cofibrations.

(2) A functor U: € — 2 is called right Quillen functor, if U is a right adjoint and

preserves fibrations and trivial fibrations.

(3) Suppose that (F,U, ¢) is an adjunction, where ¢ is an isomorphism of bi-functors
HOIIl@(F(_), _) = HOIH@(—, U(_)) .

The triplet (F,U, ) is called is called Quillen adjunction if F is a left Quillen

functor and U is a right Quillen functor.

Example 1.2.2. Let € be a model category. The adjunction (1.1)) induced by the
functor (—)4 : € — % is a Quillen adjunction.

Lemma 1.2.3. Suppose that (F,U,p): € — 2 between two model categories € and
2. If F is a left Quillen functor or U is a right Quillen functor, then (F,U,¢) is a

Quillen adjunction.

Proof. See [18, Lemma 1.3.4]. O

Derived functors

In the following definitions we use the notion of left and right Kan extensions. We refer

the reader to [26] for a precise definition of these concepts.

Definition 1.2.4. Let € be a model category, let Z be an arbitrary category and let
F: € — 2 be a functor.

(1) The left derived functor of F' is the right Kan extension LF': Ho (%) — Z of F
along the localization functor v4: ¢ — Ho (%).

(2) The right derived functor of F is the left Kan extension LF': Ho (%) — 2 of F
along the localization functor v4: ¢ — Ho (%).

Proposition 1.2.5. Let F': € — 2 be a functor between a model category € and
an arbitrary category 9. If F sends trivial cofibrations between cofibrant objects to

isomorphisms, then the left derived functor of F' exists.

Proof. See [17,, Proposition 8.4.4]. O
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Definition 1.2.6. Let ¥ and Z be two model categories and let F': 4 — Z be a func-
tor. The (total) left derived functor of F is the left derived functor of the composition
¢ 5 2% Ho (2). In other words, the total left derived functor of F' is the functor
LF:Ho(%)— Ho(Z) which is the right Kan extension of the composition

¢ 2 2 22 Ho ()
along v¢: ¢ — Ho (%).

Proposition 1.2.7. Let F: € — 2 be a functor between two model categories € and
9. If F sends trivial cofibrations between cofibrant objects to weak equivalences, then
the left derived functor of LF': Ho (¢) — Ho (Z) ewists.

Proof. See [17, Proposition 8.4.8]. O

Definition 1.2.8. A Quillen adjunction (F,U,p): ¢ — 2 is called Quillen equiv-
alence if for all cofibrant object X in % and fibrant object Y in 2, a morphism
f € Homg(F(X),Y) is a weak equivalence in Z if and only if ¢(f) € Homg(X,U(Y))
is a weak equivalence in %. In other words, if every cofibrant object X in % and fibrant
object Y in 2, a morphism f: F(X) — Y is a weak equivalence in Z if and only if
o(f): X = U(Y) is a weak equivalence in %

Proposition 1.2.9. Let (F,U,p): € — 2 be a Quillen adjunction. The following

statements are equivalent:
(a) (F,U,) is a Quillen equivalence.

(b) For every cofibrant object X in €, the composite

(UoroF)(X)

X s (UoF)(X) (UoRo F)(X) ,

and for every fibrant object Y in 2, the composite

(FogoU)(Y)

(FoQoU)Y) (FoU)Y)—=Y.

(¢c) L(F,U,p) is an adjoint equivalence of categories.
Proof. See [18, Proposition 1.3.13]. O

Proposition 1.2.10. Let F': € — 2 be a left Quillen equivalence, and suppose that the
terminal object x of € is cofibrant and F' preserves terminal object. Then Fy: € — Dx

18 a Quillen equivalence.

Proof. See [18, Proposition 1.3.17]. O
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1.2.2 Simplicial model categories

Some model categories can be seen as categories of modules over the category of sim-

plicial sets, such model categories are known as simplicial model categories.
Definition 1.2.11. A category ¥ is a simplicial category, if there is a bifunctor
Map (—,—): €°° x € — AP ets,
called space functor, satisfying the following properties:
(1) For two objects X and Y of €, we have
Map (X,Y)o = Homg(X,Y).
(2) For each object X of €, the functor Map (X, —): € — A°P.ets has a left adjoint

functor

X®—: AP Yets - €,
which is associative, that is, there is an isomorphism
X (KxL) S (XK)® L,
functorial in X and in K, L € A°P.Zets.

(3) For each object Y of €, the functor Map (—,Y): €°P — A°P.Yets has a right
adjoint functor
Y AP Fets — €.

Definition 1.2.12. A simplicial model category € is a model category that is also

simplicial such that

(M7) if i: A — B is a cofibration and p: X — Y is a fibration, then the morphism of

simplicial sets
Map (B, X) "% Map (4, X) Xzgap (4.x) Map (B, Y)
is a fibration, and it is a trivial fibrations if either 7 or p is a weak equivalence.

Remark 1.2.13. Let % be a simplicial model category. By adjointness in (2) and (3)

of Definition [1.2.11] we have two isomorphisms
Homy (X @ K,Y) =~ Hompop 7ers (K, Map (X,Y)) ~ Homy (X, YE) |

functorial in X,Y € ¥ and K € A% %ets. Notice that on the second isomorphism,
to observe that, the functor Map (—,Y): €°P — A°P.Yets can be viewed as a functor
¢ — (A% Fets)°P. The above isomorphisms are known as axiom M6. The axiom (MT7)
is equivalent to say that the functor Map (X, —) of (2) is a left Quillen functor and the
functor Map (—,Y") of (3) is a right Quillen functor.
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Some properties

Definition 1.2.14. Let ¥ be a cocomplete category. For every object X of A°P¥ and
every simplicial set K, we define X ® K to be the functor X ® K: A°® — € given by

[n] — H X,
K,

where [] denotes the coproduct in €. If 6: [m] — [n] is a morphism in A, then 6
induces a morphism 0*: (X ® K),, — (X ® K),, given by the following composite

0*
[1RS Hx ¢ IXm — ] Xm
Kn Kn K’m
where the first arrow is the morphism induced by x0*: X,, — X,, and the second is
induced by g0*: K,, — K,,. We have a bi-functor
—® —: APE x A% Fets — APE
defined by (X, K) —» X ® K.

Definition 1.2.15. For two objects X and Y of A%, we define a simplicial set
Map »(X,Y") to be the contravariant functor

[n] = Hompaery (X ® Aln],Y),
where ® is defined in Definition [1.2.14]

Theorem 1.2.16. Let € be a complete and cocomplete category. Then A°PE together
with the bi-functor — ® — and Map g(—,—) (see Definition |1.2.14| and [1.2.15) is a

simplicial category.

Proof. See [11]. O

Lemma 1.2.17 (Cube lemma). Let € be a model category. Suppose we have commu-
tative cube of cofibrant objects

Ay X1
ba Px
g1
f1 A, as X5
5 (1.3)
Bl by Y1 92
(3%
oB
By = Ya
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where the faces on the back and front are cocartesian squares and suppose ai,as are
monomorphisms. If a4, ¢p and ¢x are weak equivalences, then ¢y is a weak equiva-

lence too.

Proof. Let B be the category {a,b,c} with three objects and non identity morphisms
a—banda—c

c+—a—b.

We choose a function d: obj (B) — N such that d(a) < d(b) and d(a) > d(c), so that
B becomes a Reedy category with By = {a,b} and B_ = {a,c}. The category €% is
provided with the Reedy model structure (see [18]). We recall that the constant functor
R: € — €5 is the right adjoint functor of the colimit functor

colim : €% — ¢ .

We claim that colim is a left Quillen functor. By Lemmall.2.3] it is enough to prove that
R is a right Quillen functor. Indeed, observe that R preserves weak equivalences. Notice
that R also preserves fibrations, because a morphism from a diagram C <+ A — B into
a diagram C’ < A’ — B’ is a fibration in €7 if and only if B — B/, C — C’ and
A — A’ x¢ C are fibrations in €. Hence, we deduce that R is a right Quillen functor.
Now, a cofibrant object in € has the form

CeAiB,

where A, B and C are cofibrant objects in €, and f is a cofibration. By hypothesis we
have a diagram

A1 Xl
ba ox
fi Ay e Xo
f2 (1.4)
By

B

By

where a1, as are monomorphisms and ¢4, ¢p, ¢x are weak equivalences. Notice that
this diagram is a morphism from Bj < A; X, to By « Ay B Xo, thus the triplet
(6B, P4, dx) defines a weak equivalence between cofibrant objects in 2. Observe that
¢y is the colimit of (45, P4, dx), see diagram . The Ken Brown’s lemma allows

us to deduce that ¢y is a weak equivalence. O
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Theorem 1.2.18. Let € be a model category. Then the total left derived functors of
—®—: € x AP Fets -+ €

and
Hom(—, —): A°PFets x €°P — €°P

exist.
Proof. See [18]. O
Definition 1.2.19. We denote by
— @l —: Ho (%) x Ho (A°Pets) — Ho (%)
the total left derived functor of — ® —: € x A°PFets — ¢ and by
RHom(—,—): Ho (%) x Ho (A°°’.ets) — Ho (%)

the total left derived functor of — ® —: ¥ x A°P.Fets — F.

1.2.3 Homotopy colimits and limits

If ¥ is a cofibrantly generated model category and if B is a small category, then the
category of functors €2 has a projective model structure, i.e. a weak equivalence is an
objectwise weak equivalence and a fibration is an objectwise fibration, see [17, Theorem

11.6.1]. In general, the functors
colém:%lg%(f, lién:‘fB%(g,

do not necessarily send objectwise weak equivalence in €5 to weak equivalences in €.

However, their total derived functor
Leolim : Ho (€F) = Ho (%), Rlim : Ho (€F) — Ho (%),
exist. More precisely, we have the following:

Proposition 1.2.20. Let € be a cofibrantly generated model category and let B be a

small category. Then, the adjoint functors
colém : ¢B = € : Const, Const:%BC"K:lilrgn,
duce adjoint pairs of total derived functors
Lcogm : Ho (¢®) = Ho (¢) : RConst, LConst : Ho (¢%) = Ho (%) : Rlién .
Proof. See [17]. O
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Definition 1.2.21. Let F': B — % be a functor. The homotopy colimit of F', denoted
by HocolimF', is the object (Lcolgm)(F) of Ho (¥).

Let € and B as before, and let QF be a cofibrant replacement of €5. We write
hocolimg:=colim g o Q%: €% — €.
Notice that for any functor F': B — %, we have a canonical morphism
hocolimgF" — colim gF'. (1.5)

This morphism do not need to be an isomorphism, however if F' is cofibrant in €5,

then the above morphism is a weak equivalence in ¢, see [I7, Theorem 11.6.8].

Borel construction

Definition 1.2.22 (Simplicial bar construction). Let X and Y be a left and a right
G-set respectively. The simplicial bar construction of X and Y is a simplicial set
B(X,G,Y) such that it has the Cartesian product X x G" x Y as the its of n-simplices
for n € N, where GV is the trivial group {e}. Writing an element of X x G" x Y in the

form (z; g1,...,9n; y), the face and degeneracy morphisms are given by the formulae
(- 91592, 9n3Y) 5 ifi=0,
di(z; 915+ 9n3Y) = (T 91592, -+, Gi-1,9i * Giv1,Git2s- - gniYy), 0 <i<n,
(T3915 - Gn—19n - ¥) if i =n,

Si(x;gl’ s ’gn7y) = (x;gla v 956, Gik1y - - - 7gﬂ7y)
(1.6)

Definition 1.2.23. For a group G, we define two simplicial sets
BG:=B(*,G,*) and EG:=B(x,G,G),

where * is the singleton seen as G-set. The simplicial set BG is the simplicial classifying

space of G and is the G-universal principal bundle.

The set of n-simplices (EG),, of EG is the nth fold product G"*! and the group G
acts on it by the action of G on its diagonal. The simplicial set EG is contractible, see
[33, Example 4.5.5].

Let € be a pointed simplicial cofibrantly generated model category. Let us take B
of the previous paragraphs to be a group G seen as a category, and let us consider the
projective model structure on €“. In this case, the cofibrant replacement functor has
the shape

QY =(EG)y AN—: €% = €°.
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For every G-object X in %, we have
hocolimg(X) = (EG4+ AN X)/G.
As in , one has a canonical morphism
hocolimg(X) — colim ¢(X) = X/G,
induced by the morphism FG;+ A X — X which results by mapping EG to x.

Definition 1.2.24. If % is, in addition, a symmetric monoidal model category, then

for any object X of € we define the nth fold homotopy symmetric power of X as
SymJ'(X):=hocolimy,, (X"\"),

where ¥,, acts on X\ by permuting factors.

We get an endofunctor Symyj, : € — € sending an object X of € to Symj (X).

Homotopy cocartesian and cartesian diagrams

Let € be a left proper model category (see [I7, Definition 13.1.1]). A commutative

diagram
A X
f
B Y

in &, is called homotopy cocartesian, if f has a factorization A 2y B' % B such that j

cofibration and p is a weak equivalence, and such that the universal morphism
B' x4 X =Y

is a weak equivalence in ¢. Let € be a right proper model category (see loc.cit.). A
commutative diagram

A X

B Y

f

in %, is called homotopy cartesian, if f has a factorization X 2y X' 2 ¥ such that jis

a weak equivalence and p is a fibration, and such that the universal morphism
A— B Xy X'

is a weak equivalence in €.
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1.3 Triangulated structures on model categories

The main references for this section are [32] and [1§].

1.3.1 Cofibre and fibre sequences

Definition 1.3.1. Let f: X — Y be a morphism in a category ¥ with terminal object

*.

(1) The cofibre of f: X — Y is defined to be the pushout, if it exists, of the diagram
in €,

X Y

it will be denoted by Y/X.
(2) The fibre of f is defined to be the pullback, if it exists, of the diagram diagram
in €,
Y

Y

*

Definition 1.3.2. Let ¥ be a pointed simplicial model category. Let X,Y be two
objects in ¥ and let f: X — Y be a morphism.

(1) The cone of X is the object
cone(X):=X ANA[1]4,
where A[1]4 = A[1] II A[0]. Notice that the morphism i;: A[0] — A[l], induced
by the 0-face morphism, induces a morphism
X — cone(X),

which is a trivial cofibration in %.

(2) The cone of f, denoted by cone(f), is the homotopy colimit of the diagram

f

X Y

cone(X)
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In the sequel, S* will denote the usual pointed simplicial circle.

Lemma 1.3.3. Let f: X — Y be a morphism in €, as before. Then the quotient
cone(X)/X is isomorphic to the smash product X A S*, and the quotient cone(f)/Y is

also isomorphic to the smash product X A S'.

Proof. Tt follows from the following cocartesian square

X X ANA[L]4

* X ASt

On the other hand, the second assertion follows since we have a commutative diagram

X cone(X)
f
Y cone(f)
* X A8t
where both squares are cocartesian. ]

Definition 1.3.4. Let & be a pointed simplicial model category.

(1) The suspension functor

¥>:Ho% — Ho¥
is the functor defined by X — X AL ST, see Definition [1.2.19

(2) Dually, the loop functor
2: Ho¥ — Ho¥

is the functor defined by X ~ RHom,(S*, X).

Cofibre sequences in pointed simplicial model categories

In the homotopy category Ho% of a pointed model category %, there is a natural
coaction of XA on the cofibre of a cofibration of cofibrant objects A — B, and dually
there is a natural action of 2B on the fibre of a fibration of fibrant objects £ — B.

We shall describe more precisely in the next paragraphs.

In the next paragraphs, ¥ will be a pointed simplicial model category.
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Coaction on XA

Let f: A — B be a cofibration of cofibrant objects in ¥ and let g: B — C' the cofibre
of f. For any object X of €, we define a right action

[C, X] x [EA, X] — [C, X]

as follows. Let us fix an object X of € and take two morphisms h: A — X2 and
u: C'— X representing elements in [X A, X| and [C, X] respectively.

We recall that the morphisms ig,4;: A[0] — A[l] induce two trivial fibrations
po,p1: XA — XAO = X moreover, we have py o h = p; o h which is equal to
the trivial morphism. Since the composition g o f is the trivial morphism, we have a

commutative diagram

A M xanl

B X

uog
which has a lifting o: B — X2l as f is a cofibration and pg a trivial fibration. Since

proao f=mpiohisequal to the trivial morphism, we get a solid diagram

A f

B

hence there is a unique morphism w: C' — X such that wo g = p; o a. We define a

coaction

Action on OB

Let p: E — B be a fibration of fibrant objects in ¥ and let i: F' — B the fibre of p.
For any object A of €, we define a right action

[A, F] x [A,QB] — [A, F]

as follows. Let us fix an object A of ¢ and take two morphisms h: A x A[l] — X and
v: A — F representing elements in [A, Q2B] and [A, F] respectively. We recall that the
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morphisms ig, i1 : AJ0] = A[l] induce trivial cofibrations ig,i1: A — A x A[l] such that
hojo = hopi is a trivial morphism. Since the composition pos is the trivial morphism,

we have a commutative diagram

A 1oV E

A x All] B

which has a lifting : A x A[l] — E, as jo is a trivial cofibration and p a fibration.

Because po o j; = poh is equal to the trivial morphism, we get a solid diagram

hence there is a unique morphism z: A — F such that wo g = p; o . We define an

action

Theorem 1.3.5. Let € be a model category as before.

(a) Suppose f: A — B is a cofibration of cofibrant objects in € with cofibre g: B — C,
and let X be a fibrant of € object. Then the function of sets

[C, X] x [2A, X] = [C, X]
given by ([u], [h]) — [u] ® [h] defines a right action of [LA, X] on [C, X].

(b) Dually, suppose p: E — B is a fibration of fibrant objects in € with fibre i: F' —
E, and let A be a cofibrant object of €. Then the function of sets

[A, F] x [A,QB] — [A, F]
given by ([v], [h]) — [v] © [h] defines a right action of [A,QB] on [A, F.
Proof. See [18, Theorem 6.2.1]. O

Definition 1.3.6. Let € be a pointed model category.
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(1) If f: A — B is a cofibration of cofibrant objects in € with cofibre g: B — C,
then the sequence
Al gl o
in Ho % is called special cofibre sequence.
(2) Dually, If p: E — B is a fibration of fibrant objects in ¢ with fibre i: F — E,
then the sequence
Filplp

in Ho % is called special fibre sequence.

Proposition 1.3.7. Let € is a pointed model category. Suppose that A i) B C and

!/ /
A i) B' % ¢ are two special cofibre sequences and there is a commutative square

f

A B
a B
A’ B’
1!

Then the induced morphism v: C — C' is YXa-coequivariant morphism of cogroups.
Proof. See [18, Proposition 6.2.5] O
Definition 1.3.8. Let ¥ be a pointed model category.
(1) A cofibre sequence in Ho % is a diagram
X-=Y—=>Z

of morphisms in Ho %, together with a right coaction Z - ZII1 ¥ X of ¥ X on Z,

such that there is a commutative diagram

X Y A
A 7 B 7 C

where the vertical arrows are isomorphisms in Ho %, the horizontal line at the
bottom is a special cofibre sequence, and in addition, the morphism w is co-

equivariant with respect to the isomorphism of cogroups Yu: XX — X A.

(2) Dually, a fibre sequence in Ho % is a diagram
X=>Y—=>Z
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of morphisms in Ho %, together with a right action X x Q7 — X of QZ on X,

such that there is a commutative diagram

X Y A
F E B
f g

where the vertical arrows are isomorphisms in Ho %, the horizontal line at the
bottom is a special fibre sequence, and in addition, the morphism w is equivariant

with respect to the isomorphism of groups Quw: Q7 — QB.
Definition 1.3.9. Let % be a pointed simplicial model category.

(1) The boundary morphism of a cofibre sequence X — Y — Z is a morphism
0: Z — XX in Ho% defined to be the composite

7 zuex MY vy
where the first arrow is the coaction of XX on Z.

(2) Dually, the boundary morphism of a fibre sequence X — Y — Z is a morphism
0: Q2Z — X in Ho % defined to be the composite

0z "% x w0z - X,
where the second arrow is the action of 27 on X.

Remark 1.3.10. Let @ be a pointed model category. Every cofibre sequence in Ho %
of the form
X=>Y=>7Z-=23X

is isomorphic to a cofibre sequence of the form

AéBgcone(f)%Z,

where A and B are cofibrant objects of . That is, there is a commutative diagram

X Y VA X
u v w Yu
A 7 B y cone(f) o7 YA

where the vertical arrows are isomorphisms in Ho %.
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Remark 1.3.11. Let A i) B % C be a special cofibre sequence in the homotopy
category of a pointed model category €, and let 9: C' — X A be its boundary morphism.
Then from the above definition, we deduce that for any fibrant object X in %, the
induced morphism
0": [XA, X] — [C, X]
is defined by [h] — [*¥] ® [h], where * is the trivial morphismC — X. By definition of
the coaction ®, the morphism [*] ® [h] is represented by a morphism ¢: C' — X in @
such that
cog=pioa,

where a: B — X2 is a lifting of the square,

A" xall

Thus, one has
hod=09%h)=[*]®[h] =[a].

Lemma 1.3.12. Suppose € is a pointed model category. If f: X — Y is a cofibration

in € between cofibrant objects, then the canonical morphism
cone(f) = Y/X

1s a weak equivalence.

Proof. Let us consider the following commutative cube of cofibrant objects

X ! y
X ! Y
(1.7)
cone(X) cone(f)
. X/Y

Since cone(X) — * is a weak equivalence and f: X — Y is a cofibration, the cube

lemma assures that the morphism cone(f) — Y/X is a weak equivalence. O
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1.3.2 Pre-triangulated structure on homotopy categories

Let . be a nontrivial right closed Ho (A°P.Zets,)-module, see [18, Definition 4.1.6]. A

pre-triangulation on % is a collection of sequences in .7,
xty4 g,

provided of a coaction of the cogroup XX on Z, called cofibre sequences, together with

a collection of sequences in .,
SN

provided of an action of the group 27 on X, called fibre sequences, satisfying the

following eight axioms:

(PT1) e Every diagram isomorphic to a cofibre sequence is a cofibre sequence,

e Dually, every diagram isomorphic to a fibre sequence is a fibre sequence.
(PT2) For any object X in .,

e the diagram x — X 9 X is a cofibre sequence,

e dually, the diagram X X X s« is a fibre sequence.
(PT3) For each morphism f: X — Y in .,

e there is a cofibre sequence the diagram X A Y % Z, where g is a morphism
in %,
e dually, there is a fibre sequence the diagram W Mox i> Y, where h is a
morphism in .%.
(PT4) (rotation)

o If X i> Y % Z is a cofibre sequence, then the sequence
y 4 z5%yx

is a cofibre sequence, where 9 is the boundary morphism of the preceding

cofibre sequence.

e Dually, if X i> Y % Z is a fibre sequence, then the sequence
0wz xtLy

is a fibre sequence, where 0 is the boundary morphism of the preceding fibre

sequence.
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(PT5) Suppose we have a commutative diagram

f

X Y
o B
X' Y’
fl

eI X LY L Zand X' LY % 7 are two cofibre sequences, then there is

a Ya-coequivariant morphism v: Z — Z’ such that the following diagram

f g

X Y A
«@ B ¥
\
X’ Y’ A
I g’

commutes.

e Dually, if W Mx Loy and W B X7 L v are two cofibre sequences, then

there is a QpB-equivariant morphism £: W — W’ such that the following

diagram
w—bh x_ 1T .y
13 a B
Y
w’ X' Y’
h/ f/
commutes.

(PT6) (octahedron) Suppose we have a morphisms X 5 Y = Z.

e If we have cofibre sequences

X%y v,
X®z5v,
vy zhw

then there is a cofibre sequence U — V' = W together with a commutative

diagram
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such that r is Yid x-coinvariant and s is Yv-coinvariant.
e Dually, If we have fibre sequences
USXSY,
VA Xz,
wiy Sz

then there is a fibre sequence U = V = W together with a commutative

diagram
e uov
U X Z
T b v U
N
V. Y
s g
BN
w

such that r is Qu-invariant and s is Qidz-invariant.

(PT7) (compatibility of sequences) Suppose we have a cofibre sequence X Iy 9 7 and
a fibre sequence X' 5 Y’ & 7.

o If we have a solid commutative diagram

x—71 y 9 .z 0 _wvx
a B a-!
V
0z’ Xy z'
e} i p
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where &~ ! is the inverse of the adjoint of o as an element of the group
[XX, Z'], then there is a morphism v: Z — Y’ making the diagram commu-

tative.

e dually, if we have a solid commutative diagram

f

X Y g Z X
51 Y )
\
VA X/ : Y’ Z!
0 7 p

where 6! is the inverse of the adjoint of § as an element of the group
[X,QZ'], then there is a morphism 3: Y — X’ making the diagram commu-

tative.
(PT8) (compatibility with the monoidal structure)
e The functor — AL —: .7 x Ho (A°P.%ets,) — .7 preserves cofibre sequences

in each variable.

e The functor RHom,(—,—): . x Ho (A% Yets,) — ¥ preserves fibre se-
quences in the second variable and converts cofibre sequences into fibre se-

quences in the first variable.

e Similarly, the functor Map «(—, —): .°P x . — Ho (A° .Yets,) preserves
fibre sequences in the second variable and converts cofibre sequences into

fibre sequences in the first variable.

Definition 1.3.13. A pre-triangulated category . is a nontrivial right closed Ho (A°P.Zets, )-

module with products and coproducts, together with a pre-triangulation on .#.

Theorem 1.3.14. The homotopy category Ho€ of a pointed model category € is a

pre-triangulated category.

Proof. Tt is proven throughout Section 6.4 of [18]. O

1.3.3 Triangulated structure on homotopy categories

Our principal goal in this section is to see that a stable homotopy category Ho%

together with its cofibre sequences is a triangulated category.

Lemma 1.3.15. Suppose the suspension functor ¥: Ho€¢ — Ho %€ is an equivalence

of categories. Then Ho € is additive.
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Proof. Since any pre—additiveﬂ category admitting finite coproducts is additive, it it
enough to show that Ho € is pre-additive. In fact, since >: Ho% — Ho % is an equiva-
lence of categories, ¥2: Ho% — Ho € is also an equivalence of categories such that we

have a functorial isomorphism

»(PX)~ X,

for any objet X in Ho%. Notice that ¥2(Q?X) is an Abelian cogroup object in Ho %
Then, any object of Ho % is an Abelian cogroup object in Ho 4. In particular for any
two objects X,Y in Ho %, the set Homp,#(X,Y) is endowed with a structure of an
Abelian group. O

Triangulated categories

A triangulated category is a triplet (., %, S), where . is an additive category, ¥ is an

auto-equivalence from .7 to itself, and S is a set of sequences of morphisms in .,

called distinguished triangles, usually denoted by

+1

satisfying the following axioms:

(TR1) If D € S and D ~ D', then D' € S. Moreover, for any X € ., then
XY¥x%0%vx)es.
(TR2) For each morphism f: X — Y in .7, there is a distinguished triangle
xXhyszowx
inS.

(TR3) (rotation) The triangle X Ly % 7z 8 sx belongs to S if and only if the
triangle Y % Z Mex vy belongs to S.

LA pre-additive category is a category € that the set of morphisms Home (X,Y) is endowed with a
structure of an Abelian group and the composition o is bilinear.
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(TR4) Given two distinguished triangles
xhyS%zhvx,
x Ly g g osx

and a commutative diagram

X Y
u v
X' Y’

f/

there exists a morphism w: Z — Z’ such that the triplet (u,v,w) is a morphism

of triangles, that is, the following diagram

x—t v 9 gz h _wx
u v w Su
y
X' Yy’ z' nX’
f/ g/ h/

commutes.
(TR5) (octahedron) Given

xLyd o svx,
Y372 -Xx 45yy,
X% 7 v S¥vx,

in S, there exist morphisms u: Z’ — Y’ and v: Y’ — X’ such that
74y Y xS g

is distinguished, and in the diagram

/

AN

/TN

Z/
+1

/

X
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(idx, g,u) is a morphism from the triangle XY Z’ to the triangle X ZY"’ and (f,idz,v)
is a morphism from the triangle X ZY” to the triangle Y ZX".

Theorem 1.3.16. Let € be a pointed model category. If the suspension functor
3:Ho% — Ho ¥ is an equivalence of categories, then Ho %€ is a triangulated category

where its distinguished triangles are cofibre sequences.

Proof. By Lemma [1.3.15] the homotopy category Ho % is additive. Let us verify the

axioms of a triangulated category:

Aziom TR1: We have cone(idx) = cone(X) and the morphism cone(X) — * is a weak

equivalence, we have a diagram

idx

X ¥X

X cone(X)

X 7 X * YA

then the sequence at the bottom is a cofibre sequence.

Axiom TR2: Let g: X — Y be a morphism in Ho 4. We choose a morphism f: X — Y

in ¥ which represents g. We consider the fibre sequence
xLy% cone(f) Boyx
in ¥. This sequence is equal to the sequence
X%y 4 cone(f) Moyx

in Ho%.

Axiom TRS3:

Suppose we have a cofibre sequence

XAYE)cone(f)gZX.

Since XX is a colimit of the diagram

Y

cone(f)
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then, there is an universal morphism u: X — cone(iy) together with a commutative

diagram

if

Y cone(f)

N
N

/

X

cone(f)

/

cone(Y) cone(iy)

(1.8)

Since the morphism i¢: Y — cone(f) is a cofibration and * — cone(Y') is a weak

equivalence, by the cube lemma, we get that u is a weak equivalence such that the

following diagram

x—1 oy " cone(f) — Y vx — > sy

XY

oy cone(f) e cone(if)

p(if)
is commutative.

Axiom TRY:

Suppose we have a commutative diagram

X Y
u v
X’ Y’

f/
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then we consider the following diagram

X ! Y
X’ ! Y’
(1.9)
C(X) cone(f)
C(X) cone(f’)
thus, we obtain a commutative diagram
x—71 vy ¢ .z _yx
u v w >Yu
v
X' Y’ 4 yX'
f/ g/ h/

Axiom TRS:
Let f: X - Y and g: Y — Z be two cofibrations. We have cofibre sequences

xhy svix o ex,

Y572 2Z/Y 53Y,
X7 5 7/Xx 5¥X.

Then we get a diagram

90f

Z/Y S(Y/X)
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where the sequence Y/X — Z/X — Z/Y — X(Y/X) is a cofibre sequence. This
finishes the proof. O

We recall that, if € is a pointed model category then the homotopy category Ho (%)
is a closed-Ho (A°P.Zets,)-module, see [18].

Definition 1.3.17. A stable model category € is a pointed model such that the sus-

pension functor ¥: Ho (¢') — Ho (%) is an equivalence of categories.

Theorem [1.3.16| says that the homotopy category of a stable model category is a

triangulated category.

Stable homotopy category with weak generators

Definition 1.3.18. Let .7 be a triangulated category with arbitrary coproducts. An
object X of 7 is called compact, if for any family {Y; };cr of objects of .7, the canonical

homomorphism of Abelian groups

P Hom (X, ;) - Hom (X, P V)
il iel
is an isomorphism.
Definition 1.3.19. Let . be a pre-triangulated category and let G be a set of objects

of .#. The set G is called set of weak generators for ., if Hom »(X"G, X ) = 0 for all
G € G and all n > 0 implies X ~ x.

Let 7 be a triangulated category. For any object G of .7, we set "G = Q™" for
integers n < 0. Then, we say that a set G of objects of .7 is a set of weak generators
for ., if Hom o (X"G, X) =0 for all G € G and all n € Z implies X ~ x.

Example 1.3.20. If S is the sphere spectrum, then G = {S} is a set of weak generators

of the stable homotopy category of symmetric spectra of simplicial sets [20].

1.4 Symmetric spectra

Let us start this section with some preliminaries. The main reference for this section

s [19]. Throughout all the text, a spectrum will be a symmetric spectrum.
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1.4.1 Restriction and corestriction on categories

Let G be a group. We can consider G itself as a category with an object and G as set of
morphisms. For a category €, we denote by € the category of functors from G to €.
A G-object of € is a pair (X, px ), where X is an object of € and px: G — Auty(X)isa
homomorphism of groups. A morphism in € corresponds to a G-equivariant morphism
(X, px) = (X', px/) of G-objects of €, that is, an endomorphism ¢: X — X’ such that

popx(g)=px(g)op

for all g € G. Note that the giving of a functor G — % is the same as giving a G-object
of €.

Suppose that %’ is a category with coproducts and G is a finite group and let n = |G|
be the order of G. For any object X of €, we define an object G x X of €¢ to the
functor G — % associated to a pair (X" pyun) where pyun: G — Autg(X"") is
defined by permuting the components of X", We have a functor G x —: € — €.
For any object X of €¢, we define an object X/G of % to the colimit X/G:=colim X,
where X is viewed as a functor G — €. We have a functor —/G: €% — .

Definition 1.4.1. Let H be a subgroup of G. The restriction functor
resf: €9 — ¢

sends a functor G — % to the composite H — G — %. In terms of G-objects, resg

sends a G-object (X, px) to X, p'y, where p'y is a composition of the inclusion H < G
and px: G — Auty(X).

The functor G x —: € — € induces a functor ®%: € — (¥“)H which sends a

functor H — % to the composite
H—% %5 %C.
Definition 1.4.2. For any object X in ¥, we define
cor% (X)) :=colim % (X),

where @%(X) is a functor H — €“. In other words, if X is an H-object of €, then
G x X is naturally an H x G-object, thus G x X can be consider as an H-object and
a G-object. We have,

cor%(X) = (G x X)/H,

which is naturally a G-object. The functor
cory: ¢ — ¢
is called corestriction functor.

45



Remark 1.4.3. Suppose that G is a finite group. For any object G-object X, the
restriction res§ (X) is the same object X, that is, the functor res§ is the forgetful

functor. Moreover, for any object Y of €, one has
cor§ (V) =G xY.

Lemma 1.4.4. (a) The pair (G x —, resg) is an adjunction, that is, one has a bijec-
tion of sets
Homya (G x X,Y) ~ Homg(X,Y).

for any two objects X € € and Y € €C.
(b) The pair (corG,res$) is an adjunction, that is, one has a bijection of sets
Homgc (cor$(X),Y) ~ Homen (X, res%(Y))
for any two objects X € €7 and Y € €C.
Proof. (a). First of all we prove that there is a bijection
Homya (G x X,Y) ~ Homg(X,Y).

Let G = {g1,...,9n} with g1 = e. By definition we have G x X = X II---II X (n
copies of X). Suppose we have a morphism ¢: X IT--- 11 X — Y of G-objects. Let
i1: X — X 1II---II X be the canonical morphism corresponding to the first component
of XII---II X. Then the composite

XAXII...IXxX3Yy

gives a morphism v : X — Y. Reciprocally, if we have a morphism ¢: X — Y. By the
universal property, the morphisms X g Y XY fori= 1,...,n, induce a morphism
p: XIO---II X — Y such that the diagram

XII-.-IIX L Y

XII---IoIX Y

is commutative. Thus ¢: G x X — Y is a morphism of G-objects of ¥, moreover we
have ¢ o4y = 1. This proves the required bijection.
(b). Tt follows from (a) with the additional observation that for every h € H, the

set of commutative diagrams

XII-- 11X L Y

XII---I0IX
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where the action of the left vertical arrow is induced by the action of H on X, is in

bijection with the set of commutative diagrams

x—% .y

h h

X Y
v

O

Lemma 1.4.5. Let K C H be two subgroups of a finite group G. We have an isomor-

phism of functors

corfl o corg o~ cor% .

Proof. Tt follows from Lemma [1.4.4] O

1.4.2 Symmetric sequences

We denote by ¥ the coproduct
Y= IX ¥l 11X, -,
i.e. the category whose objects are non-negative numbers and morphism are given by

Yn, ifm=n,

Homy(m, n) = {0 itm#n

Definition 1.4.6. Let ¥ be a category. A functor ¥ — % is called symmetric sequence.

The category of functors € is called category of symmetric sequences over €.

Remark 1.4.7. Since ¥ = [[, oy Xn, to provide a symmetric sequence ¥ — ¢ is the
same as providing functors ¥, — ¥ for all n € N, which is the same as giving a
sequence

(Xo, X1, Xo,...),

where X, is a X,,-equivariant object of € for n € N.

From the definition, one can deduce that if X and Y are two symmetric sequences

over %, then

Homgs(X,Y) = [ [ Homes, (Xp, Yr) .
neN

For every n € N, we have an evaluation functor

Ev,: €% = €¢*,
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which sends a symmetric sequence X to its n-slide X,,. We also have an evaluation

functor
Ev,: €~ = €,

which sends a symmetric sequence X to its n-slide X,, without the action of ¥, that
is, Ev,(X) = resgg' (X,). The free functor G,,: € — €~ is the functor defined as

Gn(X) =%, x X

for all n > 0. The free functor G,,: € — € is left adjoint to the evaluation functor
Ev,: €* — €. In fact, if X is an object in ¢ and if Y is an symmetric sequence in %,
then to give a morphism 3, x X — Y,, of 3,-objects, is the same as giving a morphism
X — resyy (Yy) = Evp (V).

Remark 1.4.8. If € is a monoidal category, then €~ is naturally a monoidal %-
category. Indeed, we define a product — ® —: €* x € — €, as follows. For any
object X in €* and any object K in €, we define a symmetric sequence X ® K by
setting

(X®K),=X, 0K

for all n > 0. If L is another object of %, we have a natural isomorphism
XK)L~X®(K®L),
and if 1 is the unit of ¥, we have a natural isomorphism
X1l~X.

Lemma 1.4.9. Suppose € is a complete and cocomplete category. Then the category

€* of symmetric sequences is also complete and cocomplete.

Proof. Let ®: . — €* be a functor. We define the limit lim ® and colimit colim ® to
be
(lim @), :=1lim(Ev,, o ®)

and
(colim ®),, :=colim (Ev,, o ®) .

Since €*" is complete and cocomplete, lim(Ev,, o ®) and colim (Ev,, o ®) are objects of
&>, hence lim ® and colim ® are objects of €. O

Remark 1.4.10. Suppose % is a symmetric monoidal category with a monoidal prod-

uct ®. Then for any couple of integers m,n > 0, we have a canonical functor

®: EFm X GEn — GEIE
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Indeed, suppose that we have objects X € €> and Y € €>» for integers m,n > 0,
and suppose that p: X, — Aut(X) and p/: ¥, — Aut(Y) are their corresponding
representations. We define a homomorphism of groups p® p': ¥, x 3, = Aut(X ®Y)

as follows, for any element (o, 7) € ¥, X ¥,,, we set

(p@p)(o,T) = ps @ pf.

Now, if X is an ¥,,-object and Y is an X,-object of ¥, then the product X ® Y is an
Y X Sp-object of €. Thus we have a functor @: €>m x €>n — €¥m>n,

Suppose % is a symmetric monoidal category with coproducts. The product of the

symmetric sequences X ® Y of two symmetric sequences X and Y in €* is defined as

(X®Y), H corZ><E (X;®Yj).
i+ji=n
We obtain a bifunctor — ® —: €% x €~ — €* which sends a couple (X,Y) to
X®Y.

Lemma 1.4.11. For any three symmetric sequences X,Y and Z on €, there is a

natural isomorphism

Homgs (X ®Y, Z) H Hom, s, xs; (X ®Yj, resE XE (ZH]-)) .
(i,7)EN?

Proof. We have,

Homys (X ®Y,Z) ~ H Homes, H corg"XE (Xs®Yj), Zn

neN i+j=n
~ H H Homes, <corE <3, (X; ®Yj),Zn)
neNi+j=n
=TT T1 Homys. (Xi @V resiy, s, Z0)
neNi+j=n
it
H Hom%zixzj (Xz ®Y},I"GSEZ_;]EJ_ (ZH_]')) .
(1,7)EN?
as required. ]

Proposition 1.4.12. If € is a closed symmetric monoidal category, then the operation

® is a closed symmetric monoidal product on the category €.

Proof. The unit of €* is the symmetric sequence
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where 1 is the unit of €. Now, let us prove the associativity of ® in €>. On one hand,

we have

(XeY)® 2), H corE we, (X ®@Y) @ Zy)
l+k=n

S by
H coryy v, H corzixzj (X;®Y;)® Z;

I+k=n i+j=l
H H corE o <(:orE <3, (X; ®Yj) ®Zk>
l+k=ni+j=l
M xS
~ H cory; s, (Corzliz"xzk((Xi RY;)® Zk))
itj+k=n
Zn
~ ]I coryx xw, (Xi @Y5) © Zg)
itj+k=n

On the other hand, we have

(XY @Z)= ][] corgrs, (Xi® (Y @ 2)
i+l=n

>
= H Corz Wy | Xi ® H cory! 5, (Y5 © Zg)
i+l=n jt+k=I

n E
H H cor%ile (XZ- ® cory 5 (V; ® Zk)>

I+k=n j+k=l

S $ix 3
=~ H CoTy s, (COTE izlxzk(Xi ®(Y; ® Zk)))
i+j+k=n

1

Xn
= H COI‘E,LXEJ'XE]C (XZ ® (Y7 ® Zk)) *
i+j+k=n
Hence the isomorphisms (X; ® Y;) ® Z ~ X; ® (Y; ® Zj) induces an isomorphism
(X®Y)®2), ~(X® (Y ®Z)), as ¥,-objects, therefore we get an isomorphism of
symmetric sequences

(X)) Z~X® (Y ®Z).

Let us prove the commutativity of ®. We have,

(X@Y)y= ][] corg o5, (Xi ®Y))
i+j=n

= T codin, 055 %)
Jj+i=n
=Y ®X),,
hence (X ®Y), ~ (Y ® X), foralln € N, then X @Y ~Y ® X. O

Now, we give the definition of a monoid in a symmetric monoidal category (see also
[25, Section 4.3]).
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Definition 1.4.13. Let ® be the symmetric monoidal product defined on a category
¢ with unit 1. A monoid in € is a triplet (R, ugr,nr), where R is an object of &,
pr: R® R — R is a morphism called multiplication and nr: 1 — R is a morphism

called unit morphism, such that they satisfy the conditions below:

(1) (associativity) The diagram

HR®idR
_—

RRR®R R®R
idr®ur KR
R®R R

HUR

is commutative.
2) (compatibility with the unit) The composites
Y
1o RS  Ro R M R,
Ro1 PR Ro R M2 R,
are the unit isomorphisms of the product ®.

In the sequel, we shall simply write R instead of (R, ugr,nr). A monoid R is commu-

tative if it satisfies the following condition:
(3) (commutativity) The diagram

RoR—"™ R

R®R R

KR

commutes, where 7: R® R — R ® R is the twist isomorphism of ®.

Definition 1.4.14. Let R be a (commutative) monoid in a symmetric monoidal cate-
gory (¢, ®) with unit 1. A left R-module in € is a pair (X, ux), where X is an object
of ¢, ux: R® X — X is a morphism called left action such that they satisfy the

conditions below:

(1) (associativity), the diagram

ReoRe X 9% pex
idx®pux Bx
R®X X

nx

comimutes.
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(2) (compatibility with the unit), the composite
1ex ™A™ pe x X x
is the unit isomorphisms of the product ®.

We shall simply write X instead of (X, ux).

Let ¥ be a symmetric monoidal category that is cocomplete. Suppose that R is a
commutative monoid in €.
We define a new symmetric product on the category Modg of left R-modules in 4

as follows. We define a product
— ®pr —: Modgr X Modr — Modpg

given by

m@id
(X,Y)HX@RYzzcoeq<X®(R®Y) X®Y>,
id®m

where the arrow at the top means the composite X ® (R®Y) ~ (X ®R)QY — X QY
induced by the action X ® R — X, and the arrow at the bottom is the morphism
X®(R®Y)— X ®Y induced by the action R®Y — Y.

Lemma 1.4.15. Suppose that R® —: € — € preserves coequalizers. Then, for every
pair of left R-modules X and Y in €, the product X ®gr Y is also a left R-module in
€.

Proof. We define a morphism R® (X ®rY) - (X ®gY). Since R —: ¢ — ¢
preserves coequalizers, R ® (X ®g Y) is the equalizer of the diagram

m@id
R (X®(R®Y)) R (X®Y).
id®@m
We have a diagram of the form
(R®X)®(R®Y) R®(X®Y)
X®(ReY) XoY

induced by the actions X ® R — X and R® Y — Y. Since we have an isomorphism
R(X®(R®RY))~(R®X)®(R®Y), there is a universal morphism

mid mEid
coeq<R®(X®(R®Y)):R®(X®Y)) —>coeq<X®(R®Y)::X®Y> ,
id®@m id®@m

i.e. a morphism R® (X ®rY) — (X ®rY). This morphism defines an action for
X ®rY as required. O
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1.4.3 Definition of symmetric spectra

In the sequel, ¥ will be a symmetric monoidal model category,  will be a ©-model

category (see [18]) and T" will be an object of €.

Definition 1.4.16. The category of symmetric spectra Spty(2) is defined as follows.
A symmetric spectrum is an object X = (Xo,X1,...,X,...) of 2% together with
Yn-equivariant morphisms X,, ® T — X, 41, such that the composite

X, @T% = X, TP D 5. 5 X,

is ¥, x ¥p-equivariant for all n,p > 0. A morphism of symmetric spectra is a collection

of ¥,-equivariant morphisms {f,,: X,, — Y}, }nen such that the following diagram

X, 0T —2 > X,y

fn®T fn+1

oX

is commutative for all n > 0.

Remark 1.4.17. A symmetric spectrum is an object X = (X, X1,..., X, ...) of 2%
where X,, is an object of 2>, together with morphisms X, ® T — X,,;1 in 2>, such
that the composite

X, 9T = X, 1 @T®P D 5. 5 X, 0,

is a morphism in 2>"**» for all n,p > 0.

Lemma 1.4.18. The category of symmetric spectra Spty(2) is complete and cocom-

plete.

Proof. If ®: .# — Spty(2) is a functor, we define the limit lim ® and colimit colim ®
to be
(lim @), :=1lim(Ev,, o ®)

and
(colim ®),, :=colim (Ev,, o ®) .

Let G = — ® T. Since €* is complete and cocomplete, lim ® and colim ® are objects
of €. To prove that they are object in Spt;(2) we must define their structural
morphisms. First of all, notice that for any functor ¥: . — % there is a natural
morphism G(lim ¥) — lim G o ¥. In particular taking ¥ = Ev,, o ®, we have a natural
morphism

G(limEv, o ®) — lim (G o Ev, 0 ®) .
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On the other hand, the natural transformation G o Ev,, — Ev,4; induces a natural
transformation
GoEvpo® - Evy 109,

hence a morphism limG o Ev,, 0 ® — limEv,, 11 o ®. Then, we define the structure

morphisms of lim ® to be the composite
G(limEv, o ®) — lim (G o Ev,, 0 ®) — lim(Ev, 41 0 ®).

Since G is a left adjoint functor, it preserves colimit. Then the structure morphisms

for colim ® is defined as the composite

colim (go®)
—

G(colim Ev,, o ®) ~ colim (G o Ev,, o ®) colim (G o Evy 41 0®).
Therefore, lim ® and colim ¢ are symmetric T-spectra. O
We have an endofunctor — ®71T': ¥ — ¥ which sends an object X to X ® T'. We set
sym(T):=(1,T,T%%,T%3,...).

Fix an integer n > 0. For any pair (7, ) of non-negative integers such that i + j = n,

we have a canonical morphism

T @T% — resgjxxj (T%™),
and this has an adjoint morphism

cory? s, (T @ T%9) — 7"

where corgfxzj (T @ T®7) = (sym(T) @ sym(T)) . Thus, we have a canonical mor-

phism of symmetric sequences
m: sym(T) @ sym(T) — sym(T).
Lemma 1.4.19. The object sym(T) is a commutative monoid in €.

Proof. We prove the commutativity of m on sym(T) Notice that corgszj (T® @ T®7)
is the coproduct of (}) copies of T®" ® T®’ and corE «x, (T® @ T%") is the coproduct

of (T;) copies of 7%/ @ T®!. Since we have an isomorphism
T®i ® T®j ~ T®j ® T®i ’
we get an isomorphism
corslsy (T% @ T%) o~ corg 5, (T® @ T®') .

A similar computation shows the associativity of m and the compatibility with the
unit. O

o4



Proposition 1.4.20. The category Sptp(Z) of symmetric spectra is equivalent to the

category of left sym(T)-modules in the category of symmetric sequences ™.
Proof. 1t follows after noticing that the giving of a multiplication
m: X @sym(T) - X
is the same as providing a collection of ¥; x ¥;-equivariant morphisms
mij: Xi @ T = X4 g,

for all (i,7) € N the compatibility conditions of Definition [1.4.16 O

Definition 1.4.21. For each n € N, we define the evaluation functor
Ev,: Spt;(2) —» 2

which sends a symmetric spectrum X to its n-slice X,. For each n > 0, we define a

functor F,: 2 — 2> taking an object of A of 2 into the symmetric sequence
0,...,0,%, x 4,0,0,...),

where X,, X A lies in the n-th place. Hence, we set
Fo(A):=F,(A) @ sym(T) .

Remark 1.4.22. We have Fy(A) = (A, AR T,...,A® T, ...). In particular, one
has
Fy(1) = sym(T).

From the definition, we deduce the following formula:

0, ifm<n,
Xm XS (A®T®(m_”)), ifm>n.

(FndA)m = {
For each n > 0, we define a functor R, : 2 — 2% to be the functor which sends an
object of A of Z to the symmetric sequence
(%, ..., %, Map (3, A),*,%,...),

where Map (X,,, A) lies in the n-th place. Now, we define a functor R,,: 2 — 2> to be
the functor
A — Hom(sym(T), R, (A)).

Lemma 1.4.23. For each n > 0, we have:

(a) The functor Fy,: 9 — Sptp(2) is a left adjoint to the evaluation functor Evy,.
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(b) The functor Ry: 2 — Sptp(Z) is a right adjoint to the evaluation functor Ev,,.
Proof. 1t follows from the definitions. O

Lemma 1.4.24. For any object A in 2 and K in €, we have an isomorphism
Fo(A) ®sym(T) Fin(K) = Fipin(A® K)
for any pair n,m € N.

Proof. 1t follows from the definitions. O

1.4.4 Model structures on symmetric spectra

In this section, € will be a left proper cellular symmetric monoidal model category and
2 will be a left proper cellular ¥-model category, and T will denote a cofibrant object
of €. See [I7, Definition 12.1.1] for the definition of a cellular model category.

Definition 1.4.25. Let f be a morphism in Spt(2).

(1) fis a level weak equivalence if each morphism f,, is a weak equivalence in 2. Let

W be the class of level weak equivalences.
(2) f is a level fibration if each morphism f,, is a fibration in 2.

(3) f is a projective cofibration if it has the left lifting property with respect to all

level trivial fibrations.

Projective model structure on symmetric spectra

Let I be the generating cofibrations of & and J be the generating trivial cofibrations
of . We denote

Ip:= U F, I and Jp:= U F.J.
neN neN

Lemma 1.4.26. If an object A of a model category 2 is small relative to the cofibrations
(resp. trivial cofibrations) in 9, then for anyn > 0, the spectrum F,,(A) is small relative

to level cofibrations (resp. level trivial cofibrations) in Sptp(2).

Proof. Let k be a cardinal such that A is a k-small relative to the cofibrations in 2.
Let X: X\ = Sptp(2) be a A-sequence such that each morphism Xz — Xz, is a level
cofibration for 5+1 < A. In particular, the composition Ev,0 X : A — & is a A-sequence
such that each morphism Ev,(Xg) — Ev,(Xg11) is a cofibration in 2 for § +1 < A.

Then, we have
colim g Homy (A, Ev,, (X)) = Home (A, colim g yEv,, (X3)) .
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Since Ev,, commutes with colimits we have colim g<\Ev,(Xg) ~ Ev,(colim g Xg).

Hence,
colim g xHomgp, () (FrnA, Xg) =~ colim g xHomg (A, Ev,(Xg))
~ Homg (A, colim g \Ev,,(X3))
~ Homgy (A, Evy(colim gy X3))
~ Homgpy, () (FnA, colim g Xp) .
This proves that F),(A) is small relative to the level cofibrations in Spty(2). In a similar

way, we prove that F,(A) is small relative to level trivial cofibrations in Spt(2) if A

is small relative to trivial cofibrations in 2. O

Lemma 1.4.27. We have the following statements:

(a) A morphism in Spty(2) is a level cofibration if and only if it is in Sp-proj, where
St = Upen Bn(S) and S is the class of trivial fibrations. Similarly, a morphism
in Sptp(2) is a level trivial cofibration if and only if it is in Sp-proj, where
St = Upen Bn(S) and S is the class of fibrations.

(b) Ewvery morphism in Ip-cof is a level cofibration and every morphism in Jp-cof is

a level trivial cofibration.

Proof. (a). Let f: X — Y be a morphism in Spt;(2) and let g: A — B be a morphism
in Z. Since the functor R, is right adjoint to Ev,, for n > 0, a diagram of the form

7
f Rn(9)
Y- m R, (B)
corresponds biunivocally to a diagram
Ev,(X) —2 A
7
f g
Ev,(Y) J B

Then, we deduce that f is a level cofibration (resp. level trivial cofibration) if and only
if f has the left lifting property with respect to R, (g) and all trivial fibration (resp.
fibration) g in %.

(b). Let f: A — B be a morphism in I. From the definition, we have

B (Fo(f)) 0—0, ifm<n,
Vm\L'n =
corg;';n(f QT™™), ifm>n.
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Notice that, for m > n, one has that cors™ (f®T™™") is a coproduct of m!/(m —n)!
copies of f ® T™ ™. Since — ® T is a left Quillen functor and f is a cofibration in
P, f@T™ ™ is a cofibration in Z. Hence the morphism Ev,,(F,(f)) is a cofibration
in 2. Then every morphism of F,(I) is a level cofibration, and every morphism of
It = Upen Fr(I) is a level cofibration. By (a), we deduce that It C Sp-proj, hence
Ip-cof C (Sp-proj)-cof, but (Sp-proj)-cof = Sp-proj, then Ip-cof C Sp-proj. Again by
(a), we conclude that every morphism in Ip-cof is a level cofibration. The proof of the

second case for Jp-cof is similar. ]

Corollary 1.4.28. The domains of the morphisms of It are small relative to Ip-cell

and the domains of the morphisms of Jr are small relative to Jp-cell.

Proof: From the definition of Iz, we get dom (I7) = (J,,cny Fn(dom (1)). If X €
dom (Ir), then X is equal to F,,(A) for some n € N and some object A € dom (/). Since
2 is a cofibrantly generated model category and I is its set of generating cofibrations,
the domains of I are small relative to the cofibrations of Z; in particular, A has this
property. By Lemma the symmetric spectrum X = F,,(A) is small relative to
level cofibrations in Spty(Z). By Lemma the class I7-cof is contained in the
class of level cofibrations. Since Ip-cell C Ip-cof, the class Ip-cell is contained in the
class of level cofibrations. Hence, X = F,,(A) is small relative to Ip-cell, as required.
In a similar way, we prove that the domains of the morphisms of Jr are small relative
to J-cell. |

Proposition 1.4.29. We have the following assertions:

(a) A morphism of symmetric spectra is a level trivial fibration if and only if it is in

Ip-inj.

(b) A morphism of symmetric spectra is a projective cofibration if and only if it is in

I7-cof.
(¢) A morphism of symmetric spectra is a level fibration if and only if it is in Jp-inj.

(d) A morphism of symmetric spectra is a projective cofibration and level weak equiv-

alence if and only if it is in Jp-cof.

Proof. (a). Let f: X — Y be a morphism in Spt;(%2) and let g: A — B be a morphism

in I. Since the functor F}, is left adjoint to Ev, for n > 0, a diagram
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corresponds biunivocally to a diagram

A—F  ~ Ev,(X)

7

g = " Evn(f)

B_,

Ev,(Y)

We deduce that a morphism f is a level trivial fibration if and only if it is in I7-inj.
(b). It follows immediately from (a).
(c). Let f: X — Y be a morphism in Spty(2) and let g: A — B be a morphism

in J. Since the functor F), is left adjoint to Ev, for n > 0, a diagram

Fo(A) —2 =X

corresponds biunivocally to a diagram

A—F By, (X)

7

g e Eva(f)

B Ev,(Y)

We deduce that a morphism f is a level fibration if and only if it is in Jpr-inj.

(d). Since the class Jp-inj is equal to the class of level fibration, every morphism in
Jr-cof has the left lifting property with respect to level fibrations, and in particular to
level trivial fibrations. Thus every morphism in Jp-cof is a projective cofibration. One
deduces that every morphism in Jp-cof is a level weak equivalence. Therefore, every
morphism in Jp-cof is a projective cofibration and a level weak equivalence. Recip-
rocally, suppose that f is both a projective cofibration and a level weak equivalence.
By the small object argument, we can decompose f into a composite p o ¢, where p is
in Jp-inj and 4 is in Jp-cof. By what we said above, ¢ is in particular a level weak
equivalence. Hence, by the 2-out-of-3 axiom p is a level equivalence. Then, p is level
trivial fibration, and f has the left lifting property with respect to p, so that f is retract

of 4. This allows us to conclude that f is in Jp-cof, as required. O

Theorem 1.4.30. The projective cofibrations, level fibrations and level weak equiva-

lence define a left proper cellular model structure on Spty(2) generated by the triplet

(Ir, Jr,Wr).
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Proof of (MC1): By Lemma|l1.4.18] the category Spty(2) is complete and cocomplete.

]
X gof 7
Y

be a commutative triangle of symmetric T-spectra, where two of f, g and go f are level

Proof of (MC2): Let

weak equivalences. Then for any n > 0, we have commutative triangles

gnofn

Xn Zy,
Yy

where two of f,,, g, and g, 0 f,, are weak equivalences in Z. Since Z is a model category,

it satisfies the 2-out-of-3 axiom, then all the three morphisms f,, g, and g, o f,, are
weak equivalences for all n. Thus, the three morphisms f, g and g o f are level weak

equivalences. O

Proof of (MC3): Let f: X — Y and g: X’ — Y’ are morphisms of spectra such that
f is a retract of g. By definition, we have a commutative diagram of the form

/

X7 . x ¥ _.x

f g f
Y Y’ Y
¢ Y’

where the horizontal composites are identities. Then, for n > 0 we have a commutative
diagram

X,—2 > x/ — " X,

fn gn fn
Y, o Y, m Y,

where the horizontal composites are identities. By the retract axiom of &, one deduces

that, if g is a level weak equivalence or a level fibration, then f is so. On the other
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hand, if g is a projective cofibration, then f is projective cofibration, as the class of

projective cofibrations are defined by using the left lifting property. O

Proof of (MC/): By definition, projective cofibrations have the left lifting property

with respect with level trivial fibrations. Let

A— Y . x

7 p

B Y
WP

be a commutative square where p is a level fibration and 7 is both a projective cofibration
and a level weak equivalence. By Proposition |1.4.29| (¢) and (d), the square above has

a lifting, as required. ]

Proof of (MC5): The class of morphisms I7 and J permits the small object argument,
see [19]. Then, there are functorial factorizations v and /5 such that any morphism

f: X =Y of symmetric T-spectra can be factored as

f=B(f)oalf)and f=0d(f)or(f),
where
- B(f) is in Ip-inj, a(f) is in Ip-cell,
- 0(f) is in Jp-inj, y(f) is in Jp-cell.
Since Ip-cell C Ip-cof, the Proposition implies that:
- B(f) is a level trivial fibration, «(f) is a projective cofibration, and

- 0(f) is alevel fibration, v(f) is a projective cofibration and level weak equivalence.

This proves that Spty(Z) is a model category with generating cofibrations I and
generating trivial cofibrations Jp. Since colimits and pushouts in Spt;(2) are taken
level-wise and every projective cofibration is in particular a level cofibrations, the left
properness on Spty (%) follows immediately. For the proof of the cellularity condition,

see appendix of [19]. This completes the proof of the theorem. O
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Stable model structure on symmetric spectra

In order to define the stable model structure on Spty(2), we shall use the Bousfield
localization of the projective model structure on Spt(Z) with respect to a certain set
S, so that the functor — ® T': Spty(Z) — Spty(Z) will be a Quillen equivalence. We
shall define the S as follows. For each object X in & and integer n > 0, let

(X Fpi (X ®T) = Fu(X)
the morphism corresponding by adjunction to the morphism
XQT — Evpy1(Frp(X)) =341 Xy, (XQT),
which induced by the canonical embedding of ¥ into X3,,.

Definition 1.4.31. A symmetric spectrum X is called U-spectrum if X is level fibrant
and the adjoint ¢: X,, — UX,41 of the structural morphism o: X,, ® T'— X,,4+1, is a

weak equivalence for all n > 0.

Lemma 1.4.32. Let QQ be the cofibrant replacement functor of 9. Then, the following

statements are equivalents:
(a) A symmetric spectrum X is an U-spectrum.

(b) For any object C in dom (I), the morphism (_}?C from F,,11(QC ®T) to F,QC

mduces an isomorphism
map (F,QC, X) = map (F,,11(QC®T),X),
where map (—, —) is the homotopy function complex, see [19, p. T4].
Proof. 1t follows from the definition of the morphisms Q(;?C for n € N. ]

The previous lemma motivates the following definition to define S as the set
{Q?C |C € dom (I) Ucodom (I), n € N} )

Definition 1.4.33. We define the stable model structure on Spt(Z) to be the localiza-
tion of the projective model structure on Spt, (%) with respect to S. We shall refer to
the S-local weak equivalences as stable weak equivalences and to the S-local fibrations

as stable fibrations.

The stable model structure on Sptr(2) is the Bousfield localization, cf. [I7], of the
projective model structure on Sptp(Z) with respect to a certain set S. The stable

model structure on Spt(2) is left proper and cellular generated by
(Ir, J1.5,Ws) -
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Theorem 1.4.34. Let € be a left proper cellular symmetric monoidal model category
and let 9 be a left proper cellular €-model category. Suppose the domains of the
generating cofibrations of €, 9 are cofibrant. If f: T — T’ is a weak equivalence of

cofibrant objects of €, then f induces a natural Quillen equivalence

(=) ®sym(r) sym(T"): Sptr(2) — Spty(2) .

Proof. See [19]. O
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Chapter 2

Motivic categories

In this chapter, we compile fundamental results of A'-homotopy theory of schemes
developed by F. Morel and V. Voevodsky, [30].

2.1 Simplicial presheaves and sheaves

In this section we shall overview different model structures on the category of simplicial

(pre-) sheaves on a small Grothendieck site.

2.1.1 Simplicial presheaves

Let & be a category. The category of presheaves Pre(%) is by definition the category
Fets®”" of functors from €°P to .Fets. The category of simplicial presheaves on € is
the category of simplicial objects in Pre(%’) which is denoted by A°P Pre(€’). An object
2 of A°PPre(%) is determined by a sequence {27}, - together with face morphisms
ai - Zp = Zp—1forn>1and 0 <i<n;and degener_acy morphisms s? C T = s

for n > 0 and 0 < j < n , satisfying the following simplicial relations:

dif odit' =di_jodi, (i <),
3?+1os?28?i1108?7 (i<37),
21
nf2odn1 ifi<i ( )
sj—l i ; 1] L,
diosit=q idy,,, ifi=jori=j+1,
2

st Podi ), ifi> 41,
Let 27, % be two simplicial presheaves. The giving of a morphism of simplicial presheaves

f:Z — % is the same as giving a sequence of morphisms of presheaves
{fn: Zn = Pntnen,
satisfying the equalities:
wdi o fn=fn10 2d} (n>1), w87 0 o= fay10 28] (n>0),
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for all 0 < i < n, where 5d, 2} (resp. od}, #s}) are the face and degeneracy

)

morphisms of 2" (resp. of %).

Remark 2.1.1. The category A°PPre(%) of simplicial presheaves is canonically iso-

morphic to the following categories:
(1) FetsB*E)"
(2) FetsATXET
(3) (LetsA™)C™" = (AP Fets)?™,
(4) (Hets®")AT = (Pre€)>™.

Definition 2.1.2. Let ¥ be a category. For every object U € %€ and every integer
n > 0, we shall denote by Ay [n] the representable functor

Homgya(—, (U, [n])) : (€ x A)°P — Fets,

defined by
(X, [m]) = Home (X, U) x Homa ([m], [n]) .

Notice that Ay[n] is an object of Fets @A) and by Remark it can be seen
as an object of A°PPre(%).

Lemma 2.1.3. Let € be a category. The functor
¢ — AP Pre(€)
defined by U — A?J is fully faithful.

Proof. By Remark the category A°PPre(%) is identified with Fets B By
the Yoneda’s lemma, the canonical functor € x A — Fets®*)* is fully faithful. On
the other hand, the functor ¥ — ¥ x A, which sends an object U of ¥ to the object
(U,]0]) of € x A, is also fully faithful. Therefore, the functor ¢ — A°P Pre(%) is fully

faithful since it is the composition of two fully faithful functors. O

Lemma 2.1.4. Let 2 be an object of A°P Pre(%) and let U be an object of €. If x is
an n-simplex of 2 (U), then x induces a canonical morphism of simplicial presheaves

Proof. Let us fix an object U € ¥. For any object V € €, we have by definition,

Apy[n](V) = Homg(V,U) x A[n] ~ H Aln].
peHome (V,U)

Then, for every object V € ¥, we define a morphism ¢y : Ay[n](V) — Z°(V) to be

the morphism induced by the composite
Aln) S 2U) S 2(V),
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where 7 is the induced morphism by z. If V' — V' is a morphism in %, we naturally

deduce a commutative diagram

Py

Auln](V’) 2 (V')

Apn](V) ——= 2/(V)

where the vertical morphisms are the restriction morphisms. This shows that the

morphisms ¢y give a morphism of simplicial presheaves Ay [n] — 2. O

2.1.2 Standard model structures on simplicial presheaves

Here we give a brief overview of several model structures of the category of simplicial
presheaves on a small Grothendieck site.

We recall that a Grothendieck site is a category equipped with a Grothendieck
topology, see [38]. We refer to [I] for an exhaustive treatment of the theory of sheaves
and topos. Notice that a Grothendieck topology in [38] is called a Grothendieck pre-
topology in [I]. In the sequel, a Grothendieck site will always be a small Grothendieck
site, i.e. the underlying category is small.

In the next paragraphs, ¢ will be a Grothendieck site and Shv(%’) will denote the
category of sheaves on ¥. We have a sheafification functor —* from Pre(%) to Shv(€)
defined as the left adjoint,

—2: Pre(¢) — Shv(¥) , (2.2)
of the forgetful functor. A point x of the site € is a geometric morphism
x: Sets — Shv(€),

that is, an adjunction (z*, z,) between Shv(%) and .Zets, such that * preserves finite
limits. The stalk of a sheaf F' in Shu(%) at x is the set x*(F'), whereas the stalk of a
presheaf G in Pre(%) at x is the set *(G?).

The adjunction and the adjunction (z*,z.) induce a composition of adjunc-

tions

A°PPre(¢) — A°°Shv(€) = AP Fets .

If 2 is an object in Shv(%) (resp. in A°PPre(%) ), then the stalk of 2 at x is
the image of 2" trough the above functor from A°®?Shv(€’) to A°PLets (resp. from
A°PPre(€) to A°PFets). In the next paragraphs, we shall suppose that % is a site

with enough points, see [I].
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Definition 2.1.5. A morphism f: 2" — % in Pre(%), or in Shv(%), is a sectionwise
weak equivalence (resp. a sectionwise fibration, or a sectionwise cofibration) if for every
object U in ¥, the morphism f(U) : Z(U) — #(U) is a weak equivalence (resp. a
fibration, or a cofibration) of simplicial sets (see Example [1.1.11]).

Definition 2.1.6. A morphism f : 2" — % in Pre(%¢), or in Shv(%), is a local weak

equivalence if f is a stalkwise weak equivalence of simplicial sets.

The following table shows the standard model structures on the category of simpli-

cial presheaves.

Category Weak equivalences Fibrations Cofibrations
A°PPre(€)mj || sectionwise weak equiv. RLP sectionwise cof.
AP Pre(6 )proj || sectionwise weak equiv. | sectionwise fib. LLP
AOpPre(%)%gJ‘? local weak equiv. RLP sectiontwise cof.
AOpPre(%)g’rcoj local weak equiv. sectionwise fib. LLP

Here, RLP (resp. LLP) means that the class of fibrations (resp. cofibrations) is defined
by using the right lifting property (resp. left lifting property). The abbreviation inj
(resp. proj) means injective (resp. projective) model structure. We use the same
notations for Shv(%).

Theorem 2.1.7 (Heller). The category A°P Pre(€ )inj acquires a structure of a proper

simplicial cofibrantly generated model category.
Proof. See [10]. O

Theorem 2.1.8 (Bousfield-Kan). The category A° Pre(€)proj admits a structure of a

proper simplicial cellular model category.
Proof. More generally, see [17] for projective model structures for diagrams. O

Theorem 2.1.9 (Jardine). The category A°P Pre(€)¢ is a proper simplicial cellular

inj

generated category.
Proof. The idea of the proof consists in using Joyal’s trick (Lemma|l.1.52)), see [2I]. O

Theorem 2.1.10 (Blander). The category AOpPre(‘g)g’r%j is a proper simplicial cellular

model category.
Proof. See [3]. O

Theorem 2.1.11 (Joyal). The category A°°Shv(%€)1°¢ acquires a structure of a proper

inj

simplicial cofibrantly generated model category.
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Proof. We refer to [21]. O

Theorem 2.1.12 (Brown-Gersten). The category AOpShv(%)ﬁ‘é}j is a proper simplicial

cellular model category.
Proof. See [42]. O

The following diagram shows the relationship of standard model structures on sim-

plicial (pre-) sheaves on a site %,

Quillen equiv.

A°P Pre(€ ) proj AP Pre(€ )inj
left Bous. loc. left Bous. loc.
AOpPre(%)g)r%j A°P Pre (%)}ﬂf
AP Shy(€)Re. AP Sho(%)ins

where the double arrows mean Quillen adjunctions, see Definition [1.2.1]

2.2 Simplicial radditive functors

A radditive functor means a right additive functor, i.e. a functor that sends finite
coproducts to finite products, see Definition The main reference for this section
is [41]. In this section, € will be a category closed under finite coproducts, unless

otherwise mentioned.

2.2.1 Radditive functors

We start our discussion in this section giving the definition of radditive functors.

Definition 2.2.1. A functor
F:6°° — Fets

is called mdditz’veﬂ if it satisfies the following axioms:

(1) If () is the initial object of €, then F(0)) = pt

1Or right additive functor
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(2) For any integer n > 1 and any finite collection {X;}!' ; of objects of ¢, the

canonical morphism of sets

n n
F (H XZ) - HF(X,-)
=1 =1
is bijective.

We shall denote by Rad(%’) the full subcategory of the category of presheaves Pre(%)

consisting of radditive functors.

By definition, we have a full embedding functor given by the forgetful functor,
¢ : Rad(¥) — Pre(¥) .

Example 2.2.2. If % is an additive category, then Rad(%’) is equivalent to the Abelian

category of functors from €°P to the category of Abelian groups.

Remark 2.2.3. The coproduct of Rad(%) is not the coproduct of Pre(%). For ex-
ample, if X, Y are two objects of €, then the coproduct hx II hy in Pre(%) is not a
radditive functor, because it does not satisfy the conditions (1) and (2) of the Definition
In fact, if U and V are two objects of €, then, on the one hand we have

(hx L hy (U LLV) = hy (U LLV) 1L hy (U L V)
— Home (U 11V, X) I Homg (U 11V, Y)
- (Homcg(U,X) x Homgg(V,X)> i <Hom5g(U, Y) x Home (V, Y)) ,

and, on the other hand we have
(hx Wy )(U) x (hx Thy)(V) = (hx (U) Why (1) x (hx (V) Ay (V).
where the right-hand side is bijective to
(nx(@) x hx (V) 11 (B (U) TRy (V) ) T (B (U) x b (V) T By (U) T Ay (V).

Then (hx IThy)(U LI V) is not canonically bijective to (hx IL hy )(U) x (hx I hy)(V),
thus hy II hy fails condition (2) of Definition In general, if F' and G are two
radditive functors, then coproduct F'II G in Pre(%¢) does not satisfies condition (1),
since one has (F'II G)(0) = F(0) I G(0) = pt Il pt and pt II pt is not a final object in
Rad(¥%).

Definition 2.2.4. Let € be a small category. We denote by €<= the full subcategory
of Pre(%) generated by finite coproducts of representable presheaves on €.
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The following lemma says that one can recover the category of presheaves from the

category of radditive functors, see [41, Example 3.1].

Lemma 2.2.5. Let € be a small category. Then, we have an isomorphism of categories
Rad(¢"<>) ~ Pre(¥).

Proof. Let F be a presheaf on €. We define a contravariant functor F from €<~ to
Fets defined by F(hx):=F(X) for all object X € €. If hx — hy is a morphism of
representable functors determined by a morphism f : X — Y in %, then we defined
F(hx — hy) to be the morphism F(f) : F(Y) — F(X). If € has a initial object 0,
then F () = F(0) = pt, and

i=1

i=1

for all finite collection {X;}" ; of objects of €. This defines a functor
Pre(€) — Rad(€"<=).

On the other hand, if G is an object in Rad(%"<>), we define a functor G : °P — Fets
by X — G(hx). This defines the inverse of the above functor. O

Suppose that € has a final object *. We recall that %y denotes the full category of
the category of pointed objects in €, generated by objects X; = X II % for objects X
in ¢, see

Lemma 2.2.6. Suppose that € has a final object x. The category Rad(%€%.) is equivalent
to the category Rad(%)..

Proof. We define a functor ® : Rad(%}) — Rad(%). sending any F' in Rad(%}) to a
functor ®(F') given by ®(F)(X) = F(X4) for every object X in ¥. Notice that the
canonical morphism X — * induces a morphism * = F'(x) — F(X ), which makes of
®(F) a pointed presheaf. Reciprocally, we define a functor ¥ : Rad(%). — Rad(%})
sending a pointed functor (G, *) to a functor U(G, ) given by ¥(G,*)(Xy) = G(X)
for every object X in €. For a morphism f : X, — Y, we set U(G, *)(f) to be the

composite

(id,*)

GY) " G(Y) x G(x) ~ G(YL) = G(X4) ~ G(X) x G(x) = G(X),

where the last morphism of induced by the identity of G(X) and the restriction mor-
phism induced by the morphism X — *. It is not difficult to verify that ® and ¥ define

an equivalence of categories. O
Lemma 2.2.7. We have the following assertions:
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(a) Any representable functor is radditive.
(b) The Yoneda embedding induces a functor
h:% — Rad(¥),
which commutes with finite products.

(¢) If X and Y are two objects of €, then the coproduct of hx and hy in Rad(€) is
the representable functor hxiy. In consequence, the Yoneda embedding h of €

into Rad(%€) preserves finite coproducts.
(d) The category Rad (%) is complete.

(e) If F: J — Rad(%) is a filtered functor, then the colimit colim F' in A°P Pre(%)

1s radditive.

(f) The category Rad (%) is closed under arbitrary coproducts of representable func-

tors.

Proof. (a). Let X be an object of 4. We have hx (@) = Homg (0, X) = pt. If {U;}ier

is a finite collection of objects of ¥, then we have,

hx (H Ui> = Homy (]_[ Ui,X) = [[Home(U:, X) = [ nx (U2),

i€l el el i€l

therefore hx is radditive.

(b). By (a), the Yoneda embedding ¢ — Pre(%) factors through h : 4 — Rad(%).
Now, if X and Y be two objects of ¥, then we have hxxy = hx X hy; moreover, a

finite product of radditive functors is radditive (see also proof of (d)).

(c). Let X and Y be two objects of €, let F' be a radditive functor on %" and suppose
that there are two morphisms hx — F and hy — F. Since F is radditive, we have
F(XIIY)~ F(X) x F(Y). By Yoneda’s lemma the morphisms hx — F and hy — F
correspond to two elements a € F(X) and b € F(Y). Since (a,b) € F(X) x F(Y) and
F(X)x F(Y) ~ F(XIIY), the pair (a,b) corresponds, by the Yoneda’s lemma, to a

morphism hxiy — F such that the following diagram

72



is commutative. This proves that hxy is the coproduct of hx and hy in Rad(%).

(d). Let ® : J — Rad(%) be a functor and let ¢ : Rad(¢) — Pre(%) be the
forgetful functor. Since arbitrary limits commute finite products, the limit lim(zo ®) is

a radditive functor. Then we define lim ® to be the limit lim(z o ).

(e). Let F': J — Rad(%¥) be a filtered functor and let colim F' be the colimit in
A°P Pre(€). For every object j € J, we have F(j)(0) = pt. Notice that the functor
J — Hets given by j — F(j)(0) = pt has colimit (colim F')((})). Since J is a filtered
category, we get (colim F')(f)) = pt. On the other hand, for each object j € J and for
every two objects X, Y € €, we have F'(5)(XIIY) = F(5)(X) x F(j)(Y). Since filtered

colimits commute with finite products in the category of sets, we have
(colim F)(X ITY) = (colim F')(X) x (colim F)(Y),

thus, colim F' is a radditive functor.

(f). Let I be a non-empty set of indices and let {X;};c; be a family of objects of
¢ . Let us denote by Z¢(I) the set of finite subsets of I. We order P4, (I) with the
inclusion of sets C. Thus &y, (I) can be consider as a category, in which the morphism

are determined by the partial order C. We define a functor
O Ppin(I) — Rad(?)

given by
A h(HieA Xi) -

This is a functor; indeed, if A C B, then we have a canonical morphism [[;,. , X; —
[1;c5 Xi in €, hence we have a morphism A eq X) = M(1Lep X0 10 Rad(%’). We claim
that colim @ is the coproduct in Rad(%’) of the collection {hx,}cr. Indeed, let F' be an
object of Rad(%) and suppose that we have a collection {hx, — F'}ier of morphism
of simplicial radditive functors. For each A € P¢;,(I), the item (c) allows to deduce
that h(HieA x;) is the coproduct of the finite family {hx,}ica. Hence, there exists a

universal morphism h(HieA x;) — F' such that we have a commutative diagram

hx,

7

(2.3)

F

A0 x0)

for all i € A. Now, if A C B is an inclusion of elements of y;,(I), then we have a
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commutative diagram

ML X0)

h(HieB Xi)
It follows that, there is a universal morphism colim ® — F' such that we have a com-

mutative diagram

M4 X0) (2.4)

colim ®

for all A € Zip(I). Combining diagrams (2.3) and (2.4), we get a commutative

diagram

F

for all ¢ € I. This proves our claim. O

colim @

Reflexive coequalizers

Next, we shall recall the notion of reflexive coequalizer, and prove in Lemma [2.2.11
that the category of simplicial presheaves Rad(%) is closed under reflexive coequalizers.

This result will be used in the proof of the existence of the radditivization functor (see

Proposition [2.2.13]).

Definition 2.2.8. Let % be an arbitrary category and let

/
g

A B X

be a coequalizer in ¥. We say that X is a reflexive coequalizer, if f and ¢ have a
common section, that is, there is a morphism s : B — A such that fos=gos =1idp.

In this case, the pair (f, g) is called reflexive diagram.

74



Lemma 2.2.9. Let € be an arbitrary category. Suppose that we have a diagram

f

X1 Xo s X3
f2

a1 | |az B1|| B2 Y| |72
91

Y Y % Y3
92

as B3 3
h1 hs

Z1 224 > Z3

ha

in €, in which the rows and the columns are coequalizers, and the pairs (f1, f2) and

(a1, a2) are reflexive, and the following diagram

fi f3

X1 X2 X3
o Bj Vi
9i -
Yi Y ——Y;
as B3 V3
Z1 b Z2 ko Z3
1s commutative for 1 < 1,7 < 2. Then the diagonal
Biofi o
X, Ys 1548 Z3 (2.5)
B20f2

s a coequalizer.

Proof. First of all, we shall prove that the lower right-hand square is a pushout. Indeed,
by hypothesis f3 and ag are coequalizers, so, they are epimorphisms. Hence we have
the following,

v3 = coeq(y1,72) = coeq(1 0 f3,720 f3),

hs = coeq(hi, he) = coeq(hi o ag, ho 0 a3) .
Since v1 0 f3 = g3 0 B1 and 71 o f3 = g3 o B1, we get
v3 = coeq(gs © B1,93 0 f2) -
Similarly, since hy o ag = 830 g1 and hy o g = 3 0 go, wWe get
h3 = coeq(B3 0 g1, 83 0 g2) -
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Now, let
Yo

B3

Z3

Ys

T

be a commutative square in €, so that a o g3 = b o 3. We have the equalities,

ao(gsopi)=(aogs)op

(because (3 = coeq(f1, B2))

so that, we get a o (g3 o0 51) = ao (g3 o B2). Since 3 = coeq(gs o 81, g3 o B2), there is a
universal morphism p; : T — Z3 together with a commutative diagram

Y3

V3

Z3

Similarly, we have the equalities,

bo(Bzog1)=(boBs)og
=(aogs)og
=ao(g3091)
=ao(g3°92)
= (aogs)ogo
= (bof3) 09
=b

o (f30492)-

(2.6)

(because g3 = coeq(g1, g2))

Thus, we get bo ($3091) = bo (30 ¢ga). Since hg = coeq(f33 © g1, 33 © g2), there is a



universal morphism ps : T' — Z3 together with a commutative diagram

h
Zo 2

Zs (2.7)

T

We claim that, p; = p2. By the universal property of coequalizer, it is enough to show

that p; o hs = b. In fact, we have the equalities,

(p1 o h3)o B3 = p1o(hsofs)
= p1o(y3093)
= (p10o73) 0 g3
=aogs (by diagram )
=bo fs,

thus, (p1 0 hs)ofs = bo fB3. Since f3 is a coequalizer, it is an epimorphism, hence from
the preceding equality, we get p1 o hs = b, as required. Therefore, we ha a commutative
diagram

93
Yo

Yy

B3

Zy

which proves that the above square is, indeed, a pushout. Now, let § : Yo — W be a

morphism in € such that
fo(Brofi)=00(B20f2).
We shall prove the following equalities
foBr=00py and Oogi=0ogs.

Indeed, by hypothesis the couples (f1, f2) and (a1, ag) are reflexive, then there are two
morphisms s : Xo — X7 and ¢ : Y7 — X7, such that

fios=fros=id and aiot=agot=1id.
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Hence, we have,

fopr==00cpro(fios)
=(@opfrofi)os
=(fofro fa)os
=000 (f205)
=60o sy,

thus 6 o 81 = 6 o B5. Similarly, one has,

ogr=0o0gio(aiot)
— (Bogioal)ot
— (Bogroas)ot
=f0ogso(agot)
=009,

so that fo8; = #oFs. By the universal property of coequalizer, there are two morphisms
0:Ys — W and € : 2 - W such that the following diagram

Y, — 2 v; (2.8)
B3 o 5
7o W

is commutative. Hence by the universal property of pushout, there is a morphism

¢ : Z3 — W together with a commutative diagram

Vo—2 sy (2.9)
B3

A

To conclude that (2.5]) is a coequalizer, it remains to prove that (y30g3)o¢ = 6. Indeed,
one has
po(y30g3) =(dos)ogs
=d0gs by diagram ([2.9)
=40 by diagram ({2.8]) .
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This completes the proof. O

Lemma 2.2.10. In the category of sets, reflerive coequalizers commute with finite

products.
Proof. Let
fi o
A B X,
f2
g1 e,
C D : Y |
g2

be two reflexive coequalizers in #ets. We shall prove that, induced diagram

fixg1 axf
—

AxC BxD X xY

faxga

is a coequalizer. In fact, for each index, let s: B — A and ¢t : D — C be two common
section of the pair (f1, f2) and (g1, g2) respectively. Then, s xid¢ : BxC — Ax C'is a
common section of pair (f; X id¢, fo X id¢) and idg xt: A x C' — A x D is a common

section of pair (id4 x g1,id4 X f2). On the other hand, we have a commutative diagram

fixide axidg

AxC BxC X xC
idaxg; idpxg; idx xg;
Ax D fixidp BxD oxidp X xD
idax g ide %3 idx xf
AXY Jixidy B xY axidy XxY

for each index i = 1,2. Moreover, since for any set Z, the functor — x Z is a left adjoint
to the functor Hom g45(Z, —). Then — x Z preserves colimits in .Zets, hence we get a

diagram
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fixide axidp

AxC BxC X xC
faxido
idaxgr | |idaxge2 idpxg1 | |idpXxg2 idx xg1 | |idx xg2
fixidp axid
AxD Bx D L X x D
faxidp
idaxpg idox g idx x 3
Jixidy axid
AXY BXxY Y XxY
faxidy

in which the rows and columns are coequalizers. By the previous lemma, the diagonal

fixg1 axf
[

AxC BxD X xY

faxga

is also a coequalizer. O

Lemma 2.2.11. Suppose that F' € Pre(%€) is a coequalizer of a diagram f,g: A = B
of radditive functors. If F is reflexive, then F is radditive.

Proof. 1t follows since reflexive coequalizers in the category of sets commute with finite

products (see previous lemma). O

The Proposition [2.2.7] (f), allows us to give the following provisional definition (see
Definition [2.2.16| for a generalization of it).

Definition 2.2.12. Let {X,};c; be a family of objects of 4. We denote by

rad

[

i€l
the coproduct in Rad(%).

In the following proposition we shall prove that the forgetful functor ¢ from Rad(%)
to Pre(%) has a left adjoint functor denoted by #,,4, which plays the role of sheafification

functor.
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Proposition 2.2.13. The forgetful functor « : Rad(€) — Pre(€) has a left adjoint

functor
lraq : Pre(¢) — Rad(¥) .

Moreover, for every radditive functor F' on €, we have an isomorphism ({raq o t)(F') ~
F, i.e. we have an isomorphism of functors
lrag ot =~ idRad(‘zf) :

Proof. We define a functor Erad : Pre(¢) — Rad(%¥), as follows. Let F be an ob-
ject of Pre(¢). By Lemma (f), Rad(%) is closed under arbitrary coproduct of

representable functors; in partlcular, we consider the coproducts in Rad(%),

rad rad rad rad
IT Jlhm and ] ]_[ hw -
(pU—=V)e€ F(V) We% F(W

We shall define two morphisms p; and pa,

rad rad p rad rad

H HhU : HHhW7

(p:U—V)eC F(V P Wee F(W)

as follows. For each morphism p : U — V of ¢ and each element f € F(V), we have
a morphism p, : hy — hy and an element F(p)(f) € F(V); hence, we consider the

composites
rad rad
hU —) hV — H H hw,
Wes F(W

then, we define p; as the universal morphism induced by these morphism as follows. On
the other hand, we have the restriction morphism F(p) : F(V) — F(U), so F(p)(f) €

F(U), hence, we consider the canonical morphisms

rad rad
hU — H H hw,
We€ F(W

corresponding to the pair (U, F(p)(f)) in the set of indices of the above coproduct.
Then, we define ps as the universal morphism induced by these morphisms. We define

lrad(F') to be the coequalizer

lrad(F') :=coeq(p1, p2)

in Pre(%¢). We claim that f.,q(F) is a reflexive coequalizer. First of all, we define a

morphism
rad rad rad rad
s [T I w11 H ho
We% F(W) (pU—=V)e¥ F(V
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as follows. For every object W of € and every f € F(W), we have a morphism

(pU—V)EE F(V)
corresponding to the index (id : W — W, f). Then we have p; o s = pg o s = id, which
proves our claim. Hence, by Lemma lraq(F) is radditive. It remains to show an
isomorphism
HomRgaq(#) (brad (F), G) =~ Hompp ) (F, G) .
Indeed, by the universal property of coequalizer, to give a morphism f,q(F) — G in
Rad(%) is the same as giving a diagram

rad rad rad rad

M Ow— <[ [[mw—"—c.

(pU—V)eE F(V) P2 Weeé F(W)

such that ¢ o p; = ¢ o py. Since G is an object of Rad(%’), by the universal property

rad

of H, the morphism ¢ corresponds to morphisms ¢w (f) : hyy — G, for all objects
W € € and all elements f € F(W). By the construction of p; and pe, to give the

above diagram is the same as giving, for every morphism p : U — V and every section

w
G
%pxm

For each object W € ¥ and each element f € F(W), let us denote by ¢w(f) the
element of G(W) corresponding to morphism ¢y (f) : hyy — G by Yoneda’s lemma.

f € F(V), a commutative diagram

h
/
hu
h

v
U

Then, the commutativity of the previous square is paraphrased in the following equality

G(p)(pv(f)) = wu(F®)(f)),

for every p : U — V and every f € F(V). In other words, it is the same as giving a
collection of morphisms ¢y : F(W) — G(W) defined by f — @w/(f), for every object

W € €, such that there is a commutative square

F(V) —2—=G(V)




for every morphism p : U — V in ¥. But it means that, the collection of morphisms
ow : F(W) — G(W), for W € ¥, defines a morphism of presheaves ¢ : F' — G.
We have proved that, to give a morphism ¢,,q(F) — G in Rad(%) is the same as
giving a morphism F — G in Pre(%), which proves the required adjunction. Finally,

rad rad
if F'is a radditive functor, then the canonical morphism H H hw — F induces a
We€ F(W)
coequalizer diagram
rad rad p1 rad rad
H I I 11 ww F
(p:U—V)eE F(V) p2 Wee F(W)
in Pre(%). Therefore, we get a functorial isomorphism ({aq 0 ¢)(F) ~ F. O

Definition 2.2.14. The functor l;,q : Pre(¢) — Rad(%) is called radditivization
functor. If F is a presheaf on %, then £,,q(F) is called radditivization of F.

Proposition 2.2.15. The category Rad(%) is complete and cocomplete.

Proof. Let ® : J — Rad(%) be a functor and we recall that ¢ denotes the forgetful
functor Rad(%) — Pre(¢’). By Proposition [2.2.13] we have a isomorphism #;q 0 ¢ =~
idraq(¢), hence, we get an isomorphism faq 0 t 0 ® >~ ®. Moreover, since £1,q is left

adjoint, it commutes with colimits, then we have
colim (lyaq 0 L © @) =~ £ ,q(colim (v o P)) .

Then, the isomorphism #,,q 0ot 0o ® ~ ® allows us to define colim® as the object
lrad(colim (¢ o @)) of Rad(%). O

If {X;}ier is a family of objects of €, then

Craa(] ] 1)

i€l
is the coproduct in Rad(%’) of the objects l1aq(hx,) =~ hx, for all i € I. Thus the

following definition generalizes the Definition [2.2.12

Definition 2.2.16. Let {F;}i;cs be a family of objects in Rad(%’). We denote

rad
[T Fii=teaa (H Fz) ;

i€l el

where [],.; F; is the coproduct in Pre(%).
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Simplicial structure

Here, we describe the simplicial structure of the category of simplicial radditive functors,

see Proposition [2.2.25]

Definition 2.2.17. We say that a simplicial set K is finite, if for each n € N, the set
K, is finite.

Definition 2.2.18. For an object U of % and a finite simplicial set K, we define U ® K
to be the simplicial object in A°P% such that

for all n € N, and the face and degeneracy morphism of U ® K are induced by the
face and degeneracy morphism of K. Observe that U ® K is functorial in U and in K.
Notice that this definition is weaker than the Definition [[.2.14

Example 2.2.19. For every object X in a category % with finite coproducts, we have
X ®Al0] = X and X ® 0A[1] = X IT X, as object in A°PF.

Lemma 2.2.20. Let X be an object in a category € with finite coproducts. For couple

of termuwise finite simplicial sets K and L, we have
XRKxL)=(X®K)®L.

Proof. For every n € N, we have

(XK xLn= ][] X:H(HX) =[[X®K),=(X®K)®L),.

KnxLy Ln \Kn Ln
This proves that (X ® (K x L)), = (X ® K)® L),, for all n € N. O

Remark 2.2.21. Considering the embedding h : € — Rad(%’), we get an embedding
A°Ph : AP€ — A°PRad(¥).

Thus, for an object U of ¥ and a finite simplicial set K, the product U ® K can be
considered as an object of A°’Rad(%).

The following definition generalizes the previous definition.

Definition 2.2.22. For every object 2" of A°°’Rad(%’) and for every simplicial set K,
we define the product 2" ® K to be the functor

2 @K : A°® — Rad(%¥)

rad rad
given by [n] — H Zn, where H is the coproduct in Rad(%’) (see Definition [2.2.16)).
Ky

We have a bifunctor
— ® — : A°’Rad(¥) x A°® Fets — A°PRad(¥)
defined by (2, K) —» Z @ K.
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Definition 2.2.23. Let 2" and % be two objects in A°°’Rad(%’). We define a simplicial
set Map 12q(Z", %) as the functor A°? — Yets given by

[n] = Hompaorrad(e) (2 @ An], %).

Definition 2.2.24. For every object 2" of A°°’Rad(%’) and for every simplicial set K,
we define a simplicial radditive functor Homg (K, .2") as the functor P — A°P.ets
given by

U+~ Map (K, Z(U)),

where Map (—, —) is the function complex in A°P.%ets. We have a bifunctor
Homg(—, —) : A®Fets x A°°Rad(€¢) — A°P’Rad(%)
defined by (K, 2") — Homg (K, Z).

Proposition 2.2.25. The category A°°Rad(€) together with the bifunctors —® — and
Map yad(—, —) and Homg (K, Z°) of definitions|2.2.22} [2.2.23| and [2.2.24], is a simplicial

category.

Proof. By Proposition [2.2.15| the category Rad(%) is complete and cocomplete. Since
Definition [2.2.21] is a particular case of Definition the proposition follows from
Theorem [[.2.16 O

Corollary 2.2.26. Let U be an object in €, let K be a finite simplicial set and let &

be a simplicial radditive functor on €. Then there is a natural bijection of sets:
HomAOPRad(%”) (U ® K, ‘%) ~ Hompor ets (K7 %(U)) :

Proof. Let f: U ® K — Z be a morphism of simplicial radditive functors on . Let
n be an integer. By definition, we have (U ® K), = hyy, y which is a [Kj,| copies of

U. By Yoneda’s lemma, we have a functorial bijection of sets

Hompaa(e) (h(11,, 0)> Zn) = Zu(J [ U)-
K

The morphism of radditive functors f,, : (U ® K), — %, corresponds to an element
of Zn([lk, U), but since 2, is an radditive functor and K, is a finite set, we have
Zn(llk, U) =11k, Zn(U). On the other hand, there is a bijection

H %n(U) =~ HomKVets(Kna ‘%H(U)) :
Kn

Thus, a morphism f, : (U ® K), — %, corresponds bijectively to an element of
Hom g5 (K, 20 (U)), and they are compatible the the face and degeneracy morphisms.
This gives the expected bijection. ]
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Corollary 2.2.27. Let U be an object of €. For every morphism i : K — L of finite
simplicial sets and every morphism p : X — % of simplicial radditive functors, a

commutative diagram

UK X (2.10)
U®1i p
U®L 2%

in A°’Rad(€) corresponds biunivocally to a commutative diagram

K 2 (U) (2.11)
i p(U)
L 2 (U)

in AP Zets.

Proof. Tt follows from corollary [2.2.26] O

2.2.2 A-closed classes

If X is an object in A°P%’, then, by Definition [2.2.18] X ® A[l] is a simplicial object
on ¢. By the same definition, we have X = X ® A[0]. If ig,i1 : A[0] — A[l] are
the morphisms induced by the face morphisms dp, 0; : [0] — [1], then g, i; induce two

canonical morphisms

idxy ®ip: X - X ® A[l],
(2.12)
idxy ®i;: X - X @ A[l].

Definition 2.2.28. Let f,g : X — Y be two morphisms in A°?%. A morphism
H: X®A[l] =Y in A°% is called a homotopy from f to g, if there is a commutative

diagram

id x ®ig \\

id x ®i1 yd

86



Two morphisms f,g: X — Y in A°P% are called homotopic, if there is a natural n and

two families of morphisms
{fi : X=>Y]|i=0,....,n} and {H;: X®A[l]=>Y|i=1,...,n}.

such that fy = f, fn = g, and for each ¢ = 1,...,n, the morphism H; is a homotopy
from fi—l to fz

Definition 2.2.29. A morphism f: X — Y in A°P% is called a homotopy equivalence,
if there exists a morphism ¢ : ¥ — X in A°% such that the compositions g o f is
homotopic to idy and f o g is homotopic to idy.

Definition 2.2.30. A class of morphisms E of A°P% is called A-closed, if it it satisfies

the following axioms:
(1) E contains all homotopy equivalences in A°P%.
(2) E has the 2-out-of-3 property.

(3) If f: X — X' is a morphism of bisimplicial objects in A°PA°P%, such that for
every integer n > 0, either f([n], —) or f(—,[n]) belongs to E, then the diagonal
morphism A(f) belongs to E.

Definition 2.2.31. A A-closed class is called (A, Il )-closed if it is closed under finite
coproducts. It is called A-closed if it is closed under filtered colimits. For any class
of morphisms S in A°P%’, we denote by cla(S) the smallest A-closed class containing

S. Similarly, we denote by clx(S) the smallest A-closed class containing a class S of
morphisms of A°P%.

Lemma 2.2.32. The class of weak equivalences in A°P.ets coincides with cla (). In

particular, it is A-closed.
Proof. See [18] Lemma 5.3.1. O

Lemma 2.2.33. Let F : € — €’ be a functor preserving filtered colimits. Then for

any class S of morphism in A°PE, we have
F(clx(S)) C clzx(F(9)).
Proof. See Lemma 2.20 of [41]. O

Proposition 2.2.34. The class of projective weak equivalences of simplicial radditive

functors is A-closed, and it contains A(().

Proof. 1t follows in view of Lemma [2.2.32|and Lemma and [2.2.33|applied to the functor
of sections A°PRad(¢) — A°P.Zets defined for every object U of € to be the functor
2 — Z(U). O
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Corollary 2.2.35. Let 2" be an object of A°?Rad(€). Then, for every weak equiva-
lence of simplicial sets K — L, then induced morphism £ K — 2 ® L is a projective

equivalence.
Proof. If follows from the previous proposition. O

Let S be a class of morphisms in A°P?%". We denote by S1lid¢ the class of morphisms
of the form fIlidx, for f € S and X € ob (%).

Proposition 2.2.36. Let S be a class of morphisms in A°PE. Then the class cla(S1I

idy) is closed under coproducts.

Proof. Let f : X — Y and f’ : X’ — Y’ be two morphism in A°P%. From the following

commutative diagram

f/

0 X' Y’
X x x2S gy
f f1Iid X,f iy fIlidy
Y YIX ——Y1Yy’
idy I1f/

one gets, in particular, the equality
fUf = (idy I f) o (f Widx/).

Then, it is enough to verify that for a morphism f in cla(S IIidy) and an object X
in A°P%, we have fIlidx € cla(S T idy). We can simplify the problem even more,
as follows. Notice that, if f in cla(S I idy) and if X is an object in A°P%, then the
coproduct f ITidx is the diagonal of a morphism of bisimplicial objects in A°PA°P¥
whose arrows or columns are of the form f ITid4, where A is an object of ¥ viewed
as a constant simplicial object in A°P. Indeed, the morphism of bisimplicial objects

given by ([i], [j]) = fi Ilidx; has columns of the form fIlidy, and has f ITidx as its
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diagonal, as we can observe it in the following diagram

fo idx, folidx, folidx,

flﬂidX0—>f1HidX1%’flﬂid)ﬁ:-”

ngidX0—>f2HidX1—>f2HidX2<:>---

where the vertical and horizontal arrows mean the face and degeneracy morphisms.
Thus, it is enough to show that, for every morphism f in cla(S1lidy) and every object
Ain €, one has f11id € cla(S ITidy), but it follows from the inclusions

cla(Sidy) Iidy C cla(Sidy) idy,
for all object A in ¥. O
Corollary 2.2.37. For any class of morphisms S in A°PE, we have
clag. (5) =cla(Sidy).

In consequence, we have

Aaii..(0) = da(0).

Proof. Let S be a class of morphisms in A°P%’". By definition, cla (S 11idy) is contained
in cla ... (S IIidg). Reciprocally, by Proposition the class cla(S I idy) is
(A, oo )-closed, then cla i (S Il idy) is contained in cla (S I idg). Hence, we get
the following equality

clar.. (S idg) = cla(S Midy).

Since all identity morphisms are, in particular, homotopy equivalences, they are in

cla ... (S), then S Ilidy is contained in cla 11 (5), hence we deduce the equality
clar.. (S1idg) = clam.(S).
Thus, we get cla 1. (S) = cla(S T idy). In particular, we have
clatro. (0) = cla(idy),

and since cla () contains all identity morphisms, we have cla(idy) = cla(0), which
implies that cla 1. () = cla(0). O
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Definition 2.2.38. Let % be a category with finite coproducts as before.

(1) A morphism f: A — X in € is called coprojection, if there exists an object Y of
% such that f is isomorphic the canonical morphism A — AITY.

(2) A morphism f : A — X in A°P¥ is called termwise coprojection, if for each

n € N, the morphism f, : A, — X, is a coprojection.
Lemma 2.2.39. We have the following assertions:

(a) For every morphism f: A — B and object Y in €, the diagram

A A ALY
f gIlidy
B - BIlY
ip

where the horizontal morphisms are the canonical ones, is a cocartesian square.

In consequence, coprojections are stable under pushout.

(b) Let

B
be a diagram in A°PE, where f is a termwise coprojection. Then the pushout
of this diagram exists. In consequence, termwise coprojections are stable under

pushout.

(¢) The coproduct of a family of termwise coprojections in A°PE, if it exists, is a

termwise coprojection.

Proof. We have a diagram

0 Y
iy
A 4 ATY
g gllidy
B - BIY
iB

in which the upper square and the big square are cocartesian, thus the lower square is

cocartesian, thus we have (a). Item (b) follows from (a). Item (c) is an easy exercise. [
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Lemma 2.2.40. Suppose that € has small coproducts. Then, the transfinite composi-

tion of termwise coprojections in A°PE is also a termwise coprojection.

Proof. Notice that it is enough to show that the transfinite composition of coprojections

in ¥ is a coprojection. Indeed, let « be a limit ordinal an let
Xo=»Xi—» - —>Xg—- (<o),

be an a-sequence such that each Xg — X1 is a coprojection. By transfinite induction,

we can express each X as a coproduct of the form [, 5 X’ with X = Xo. We deduce

v<p
that X, is isomorphic to [, ., X’ and the canonical morphism Xo — [[, ., X/, is the
transfinite composition of this a-sequence. This proves the lemma. ]

Definition 2.2.41. A commutative square in A°P% is called an elementary pushout

square, if it is isomorphic to the pushout square of the form

B = Y

A

in A°P%’, where e is a termwise coprojection.

Remark 2.2.42. Let
B

A
be a diagram in %. Since we have a canonical functor Const: ¥ — A°P%, we can
consider the above square as a square in A°P%. Notice that the inclusion of simplicial

sets OA[1] < A[l] induces a morphism
BII B =B ®0A[l] — B® All]

in A°P%’. On the other hand, the morphisms B —+ A and B — Y viewed as a morphism

in A°P% induce a canonical morphism
BIIB— BIY
in A°P%’. Thus, we have a diagram

BB

B® All] (2.13)

ANlY
in A°P¥.

91



Remark 2.2.43. Let

B Y
Q: P (2.14)
A X

J
be a commutative in 4. The morphism B — X coming from the above diagram,

induces, by the universal property of coproduct, a morphism
I B-x
All]n

in ¢, for all n € N. Since (B®A[1]),, is, by definition, equal to the coproduct HA[l}n B,
we get a morphism

B®A[l] - X

in A°P%. On the other hand, the morphisms A — X and Y — X induces a morphism

AlY - X
in A°P%. Thus, we get a diagram
BIIB B & A[1] (2.15)
ANlY X

Definition 2.2.44. For every commutative square Q, as in (2.14)), in %, we shall denote
by K¢ the pushout of the diagram (2.13)). In view of the commutative square (2.15)),

we have a universal morphism Kg — X .

Example 2.2.45. Let f: X — Y be a morphism in €. If we consider the diagram

x—1 .y
Q: idx idy
X Y
f

then Ko is the cylinder Cyl(f) of f, where Cyl(f) is a pushout of the diagram

f

X Y

X @ A[l]
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Indeed, it follows since from the following commutative diagram

X XX X ® A[l]
f idILf
Y X1y Ko

in which each square is a pushout.

Lemma 2.2.46. Let f: X — Y be a morphism in €. The canonical morphisms

©: Y = Cyl(f) and ¢: Cyl(f) — Y are each other inverses homotopy equivalences.

Proof. We recall that ¢: Cyl(f) — Y is defined to be the universal morphism in the

following pushout diagram

X

X @ All]

In particular, we get that the composite Y i Cyl(f) 4 Y is the identity. On the other
hand, the composite Cyl(f) Ly % Cyl(f) is induced by the composite

All] = AJ0] 8 A1),
which is homotopic to the identity A[1] — A[1]. O
Lemma 2.2.47. We have the following:

(a) For every diagram

B Y
Q: p
A X

J

in €, the morphism AIIY — Kg is a termwise coprojection.

(b) For every morphism f: X — Y in €, the canonical morphism ¢:Y — Cyl(f) is

a termwise coprojection.
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Proof. The proof follows without difficulty from the definitions. O

Lemma 2.2.48. Let

B Y
Q: p
A X

e

be an elementary pushout square in A°®*€. Then the canonical morphism pg: Kg — X

is in cla(0).

Proof. For every i € N, let Q; be the i-th term of Q,

B; Y;
Qi : pi
A; X;

in €. Then, for each ¢ € N, we have a canonical morphism pg,: Ko, — X; in A°P%,
deduced from the pushout

B; 10 B;

A 1Y,

Ko,

'3

Let B X A[1] the bisimplicial object given by ([7], [j]) — ]I apj, Bi- Let us consider a

cocartesian square,

BIIB BX A[l]
ANlY K
in A°PA°P%. This square induces a diagram
BollBy _ T BB T By IBy T
Bo@A[] T T B @A) T T By @A) T
AolYy _ ] TAIOY, I T ALY,
Ko, T Ko _ T Ko, T



where the horizontal arrows are the face and degeneracy morphisms. We can deduce
that K has the simplicial objects Ko, for i € N, as its arrows (or columns). Since the
simplicial object B® A[1] is the diagonal of the bisimplicial object BXIA[1], we deduce
that K¢ is also the diagonal of the bisimplicial object K, because a pushout in A°P¥
(if it exists) is a termwise pushout. Therefore, it is enough to prove the lemma for a
square of the form

B—2 ~BIX

A AT X

in . Notice that Q can be decompose as a coproduct @ = Q1 II Qs, where Q; and

Q9 are of the form

Ql : 9 QZ : idx

A

A 0

ida
moreover, we have Ko = Kg,110, = Ko, Il Kg,. Hence, by Corollary [2.2.37] cla(0) is

closed under finite coproducts, so it is enough enough to prove the lemma for squares

of the form Q; and Qs, but one can notice that they are both, up to transposition, of

the form
x—71 .y
Ql ldX ldy
X Y

By Example 2.2.45] Ko/ coincide with the cone of f, hence by Lemma it follows
that pos: cone(f) — Y is a simplicial homotopy equivalence, therefore por is in cla ().
This finishes the proof. O

The following definition is a particular case of Definition [2.2.38

Definition 2.2.49. A morphism f: A — X in Rad(%) is called coprojection, if there

exists an object Y of Rad(%) such that f is isomorphic the canonical morphism from
rad
Ato AIl'Y. A morphism f: o — 2 in A°°’Rad(%) is called termwise coprojection,

if for each integer n > 0, the morphism f,: <, — %, is a coprojection.

Corollary 2.2.50. Let I be a set of morphisms in A°PRad (%) consisting of termwise
coprojections. Then any countable transfinite composition of pushouts of coproducts of

elements of I, is a termwise coprojection.
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Proof. Let
2o—> 21— > Xy Zns1— - (2.16)

be a w-sequence such that each morphism 2, — Z,+1 is a pushout of coproducts
of elements of I. Since I consists of termwise coprojections, by Lemma the
coproduct of elements of I is a termwise coprojection, hence by the same lemma (b),
the morphism %2, — %,+1 is a termwise coprojection for each n < w. Finally, by
Lemma the we conclude the transfinite composition of is a termwise

coprojection. O

2.2.3 Model structure on simplicial radditive functors

In this section we shall prove that if ¥ is a category with finite coproducts, then

category of simplicial radditive functors A°°’Rad(%’) is provided of a projective model

structure (see Theorem [2.2.59)).

Definition 2.2.51. Let f: 2" — % be a morphism in A°’Rad(%’). The morphism f

18:

(1) a weak equivalence in A°°’Rad (%), if f is an object-wise weak equivalence, that is,
for every object U in ¥, the morphism of simplicial sets f(U): 2 (U) — % (U) is
a weak equivalence in A°P Pets. We denote by W ..q the class of weak equivalences
in A°°’Rad(¥%).

(2) a fibration in A°PRad(%), if f is an objectwise fibration, that is, for every object
U in €, the morphism of simplicial sets f(U): 2 (U) — #(U) is a fibration in
A°P Fets.

(3) a cofibration in A°°’Rad (%), if f has the left lifting property with respect to weak

equivalences and fibrations in A°’Rad(%).
In view of Remark [2.2.21] we define the following sets of morphisms in A°?Rad(%):
Lag:={U®9JA[n] = U®A[n]|U € €,n >0},

Jrad:={U @A [n] 2 U A[n]|U € €,n>0,0<r<n}.

In Theorem we shall prove that A°PRad(%) is a cofibrantly generated model
category in which I.,q is the class of generating cofibrations and J.,q is the class of
generating trivial cofibrations. Let I be the set of simplicial sets 0A[n] — Aln] for
n > 0. Let J be the set of simplicial sets A"[n] — A[n] forn >0 and 0 <r <n.

Lemma 2.2.52. Every object in A°PRad (%) is small. In consequence, Iaq and Jyaq

permit the small object argument.
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Proof. Let o/ be an object of A°°’Rad(%’). Let k be the cardinal of the set,
Si= [ ).
(U,n)€o0bj (¢)xN
We shall prove that o is k-small relative to the class of all morphisms in A°°Rad(%).
Indeed, let A be a x-filtered ordinal and let 2" : A\ — A°Rad(%’) be a A-sequence. It

is not difficult to see that the canonical function of sets
0: colim o« xHompop pre(4) (2, Z7) — Hompop pre(y (47, colim 4 <\ 27)

is bijective. Considering that 2 : A — A°PRad(¥) is a filtered functor, Lemma
(d) asserts that colim )% is an object of A°’Rad(%); then, we have

HOonpRad((g) (JZ%, colim 5<>\3{5) = HOonppTe(cg) (M, colim B<>\‘%fﬁ) s

because A°’Rad (%) is a full subcategory of A°PPre(%¢’). Hence we have a commutative

diagram,

colim 5<>\H0onpRad(rg) (%, %g) HOonpRad(cg) (ﬂ, colim B<A gl/rﬁ)

colim g y\Hompop pre(#) (<, 25) Homaor pre(e) (<7, colim g\ (Z3))

Since @ is bijective, the top arrow is bijective, as required. ]

Lemma 2.2.53. For any object U € € and every finite simplicial set K, the object
U ® K of A°?Rad(%) is finite.

Proof. Let us fix an object U € ¥ and a finite simplicial set K. Since K is finite, there
is a finite cardinal such that K is x-small relative to all morphisms of A°P.%ets. We
claim that U ® K is k-small relative to all morphisms in A°’Rad(%’). Indeed, let A be
a k -filtered ordinal and let

Zo— 21— > Zg— - (B<A)

be a A-sequence of simplicial radditive functors. By Lemma (e), filtered colimits
in A°°?Rad(%) comes from the colimits in A°P Pre(%’), hence we obtain a A-sequence of

simplicial sets,
ZoU) = 21(U) = - = ZU) = - (B<A).

We have a commutative diagram

colim g \xHom popgrad(#) (U @ K, Z3) Hom popRad(#) (U ® K, colim /3<,\¢%”5)

colim g« xHompaop zess (K, Z3(U)) Homaop st (K, colim g %g(U))
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where the vertical arrows are bijections deduced by Corollary [2.2.26] Since K is k-
small relative to all morphisms of A°P.Zets, the horizontal arrow at the bottom of the

preceding diagram is bijective, hence the top arrow is so, finishing thus the proof. [

The following corollary is a strong version of the small object argument, as we get
that every morphism has a functorial factorization in a morphism having the right lifting
property and a morphism that is a countable transfinite composition of coproducts of

certain morphisms.

Corollary 2.2.54. There ezist two functorial factorizations (c, B) and (y,9) on A°P’Rad(%)

such that for every morphism f in A°°’Rad(%, we can write

f=B8(f)ealf),

where a(f) is a countable transfinite composition of pushouts of coproducts of elements
of Iaq and B(f) in Iaq-inj, and

f=0(f)or(f),

where y(f) is a countable transfinite composition of pushouts of coproducts of elements
of Jraa and 5(f) in Jraq-inj,

Proof. 1t is a consequence of the previous lemma. ]

Definition 2.2.55. We denote by % the full subcategory of small coproducts of objects
of the form hy in Rad(%) for objects X in €.

Corollary 2.2.56. Let QQ be a cofibrant replacement functor of category A°°’Rad(%)

with respect to the projective model structure. Then Q takes values in A°PE.
Proof. 1t is a consequence of the previous corollary. O
Lemma 2.2.57. We have the following assertions:

(a) A morphism is a fibration in A°°’Rad (%) if and only if it is in Jyaq-inj.

(b) A morphism is a fibration and a weak equivalence in A°°’Rad (%) if and only if it
s in Iraq-inj.
(¢) A morphism is a cofibration in A°PRad(%€) if and only if it is in Iaq-cof.

Proof. (a). By Corollary [2.2.26 a commutative diagram

U ® A"[n] A
P
U ® Aln] 4
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corresponds biunivocally to a commutative diagram

OAN"[n] Z2(U)
p(U)
Aln] 7 (U)

Then, we observe that p in J,g-inj if and only if the morphism p(U) is in J-inj for
every object U € €, i.e. p in J.aq-inj if and only if the morphism p is a object-wise
fibration.

(b). Similarly, by Corollary [2.2.26] a commutative diagram

U ® 0A|n| v
p
U ® Aln] %
corresponds biunivocally to a commutative diagram
0A[n] 2 (U)
p(U)
Aln] Z(U)

Then, we observe that p in I.,q4-inj if and only if the morphism p(U) is in I-inj for every
object U € €, i.e. pin I,4-inj if and only if the morphism p is both an object-wise
fibration and an object-wise weak equivalence.

(c). Since Ijaq-cof = (Iag-inj)-proj and cofibrations in A°?Rad(%’) have the left
lifting property with respect to both fibrations and weak equivalences, we deduce from
(b), that a morphism is a cofibration in A°°’Rad(%) if and only if it is in Iaq-cof. O

Lemma 2.2.58. We have J.uq-cell C Wy,q N I-cof.

Proof. 1t is an easy exercise to show that J.,q-cell is contained in I-cof. Hence, it is
enough to show the inclusion Jy,q-cell C I-cof, but it follows by applying Proposition
[2.:2.34)in a suitable way. O

Theorem 2.2.59 (Voevodsky). The weak equivalences, fibrations and cofibrations given
in Definition |2.2.51| provides a cofibrantly generated model structure on A°?Rad(%€) in
which Iaq is the class of generating cofibrations and Jyaq is the class of generating

trivial cofibrations.
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Proof. We shall verify that A°?Rad(%) satisfies the hypothesis of the Recognition the-
orem (Th. . Indeed, by Proposition the category Rad (%) is complete and
cocomplete, then the category A°?Rad(%’) is so. Since weak equivalences and fibrations
in Rad(%’) are defined to be object-wise weak equivalences and fibrations respectively,
the 2-out-of-3 and the retracts axioms for A°?Rad(%’) follow from the 2-out-of-3 and
the retracts axioms for simplicial sets. Since cofibrations in Rad(%) is defined by using
the left lifting property, the retracts axiom for cofibrations follows from Lemma [1.1.43
(b). By Lemma the sets I;,q and I.,q permit the small object argument. We
recall that W ,q denotes the class of weak equivalences on A°°’Rad(%). By Lemma
(a) and (b), we deduce that I ,g-inj = Wiyaq N Jpag-inj. Finally, by Lemma
we have J..q-cell C Wyaq N I-cof, which completes the hypothesis of the Recognition
theorem (see Theorem [1.1.51]). O

Proposition 2.2.60. Suppose that f: 2~ — % be a projective cofibration in A°°’Rad(%).
Then there exist two morphisms s: % — o/ and p: &/ — % such that, for each index
n > 0, the term (s o f), has the form %, — Z, I F,, where F, is a coproduct of
representable radditive functors, and f is a retract of so f which fixes X, that is, we

have a commutative diagram

x 2 2
f sof !
Yoot —— Y

where the horizontal composites are the identities.

Proof. Similarly as the Corollary by Corollary we get a factorization
f = pog, where g is a countable transfinite composition of coproducts of elements of I,,4

and p in I ,4-inj. By Lemma [2.2.57, the morphism p is trivial fibration in A°?Rad(%).
Then f has the left lifting property with respect to p, and so by the retract argument,

there exists a morphism s: % — &7 such that we have a commutative diagram

2 2 2
i o f
Yl ————Y

such that pos = id. In particular, we have g = so f. It remains to show that, for each
integer n > 0, the term (s o f), has the form 2, — 2, 11 F,,. Indeed, suppose that g

is a transfinite composition of the w-sequence
2o—> 21— > Ip— - (n<w),
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such that for every i € N, the morphism Z; — Z;i+1 is a pushout

rad

[ U ®oa[m] Z;
Des

rad

[ U ®oaim] Zii1
Des

and S is the set of diagrams
U ® 0A[m)] 2

for morphisms U ® 0A[m] — U ® A[m] in I,,q. Notice that every morphism from
U ® dA[m] to U ® Alm| in I .4 is a termwise coprojection. By corollary [2.2.50} the

transfinite composition the above w-sequence, which is g, is a termwise coprojection. [

2.3 Simplicial Nisnevich sheaves

In this section, we study simplicial Nisnevich sheaves defined on an admissible category

of schemes [40, Appendix A].

2.3.1 Admissible categories

The category of smooth varieties is not good enough to study geometric symmetric
powers, as symmetric powers of a higher dimensional smooth variety have singularities.
This issue can be solved by considering admissible categories of schemes.

Let .Zch/k be the category of schemes over k. For two k-schemes X and Y, we
write X X Y to mean the Cartesian product X Xgpecx) Y. We also denote by X II'Y
the disjoint union of X and Y, as schemes. We recall that the point Spec(k) is the
terminal object of .#ch/k, whereas the empty scheme () is its initial object. An étale

morphism is a flat and unramified morphism of schemes, see [28].

Definition 2.3.1. Let k be a field. A small full subcategory 4 of Sch/k is called

admissible P if it satisfies the following axioms:

? f-admissible in [40]
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(1) Spec(k) and Al are objects in €,

(2) ¥ is closed under the product X, that is, for any two objects X and Y of &, the
product X x Y isin %.

(3) ¥ is closed under the coproduct I, that is, for any two objects X and Y of €,
the coproduct X I1Y is in %.

(4) If U is a k-scheme such that there is an étale morphism U — X with X is in &,
then U is in €.

(5) If G is finite group acting on an object X of &, then the (categorical) quotient
X/G isin 7.

Example 2.3.2. The following categories are admissible:
(1) The category of schemes of quasi-projective schemes over a field k.
(2) The category of normal quasi-projective schemes over a perfect field k.
(3) The category of normal quasi-affine schemes over a perfect field k.

Remark 2.3.3. By definition every admissible category of schemes over a field contains
the affine line A', but it is not true that all admissible categories contain the projective
line P! over a field. For example, the subcategory of normal quasi-affine schemes over

a perfect field is admissible, but the projective line P! is not quasi-affine.

Nisnevich sheaves
Unless otherwise mentioned, 6 will be an admissible category, see Definition [2.3.1

Definition 2.3.4. An elementary distinguished square in % is a Cartesian square of

the form
Y Vv
Q: p (2.17)
U X

J
where j is an open embedding and p is an étale morphism such that the induced

morphism p~ (X — U)yeq — (X — U)yeq of reduced schemes is an isomorphism.

Definition 2.3.5. A family of étale morphisms {f;: U; — X }ier of € is a Nisnevich
covering if for every pointﬁ x € X there exists an index ¢ € I and a point y € U; such
that f;(y) = x and the corresponding morphism of residual fields k(z) — k(y) is an

isomorphism.

3 not necessarily a closed point.
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The Nisnevich topology on % can be described as the smallest Grothendieck topol-
ogy generated by families of the form {j: U — X, p: V — X} associated to elementary
distinguished squares of the form (2.17)), see [42, page 1400]. We denote by %nis the

site consisting of € and the Nisnevich topology on it.

Proposition 2.3.6. A presheaf F on € is a sheaf in the Nisnevich topology if and only
if for each elementary distinguished square as (2.17)), the square of sets

Fx) 2 F(v)
F(Q) F(j)
F(U) F(Y)
is Cartesian.
Proof. see [30, Prop. 14, page 96]. O

Terminology. Unless otherwise specified, . will be the category of sheaves on the

Nisnevich site énis.

As representable functors are Nisnevich sheaves, we shall use the letter h to denote

the full embedding of € into .#, so that we have a commutative triangle:

€ Pre(%)
S
7

The category .’ is complete and cocomplete, its terminal object is hgpec(r), and
filtered colimits of Nisnevich sheaves in the category of presheaves are Nisnevich sheaves.
Let {F;}icr be a family of objects in .. The coproduct of this family in .7 is the
sheafification anjis (]_[ZG 7 E) of the coproduct []..; F; in Pre(%¢’). We abusively denote

it by [],c; F3 if no confusion arises.

i€l

In the sequel, we shall consider the injective model structure on the category of
simplicial sheaves A°P.¥, see Theorem [2.1.11] where the class of cofibrations is the class
of monomorphisms, a weak equivalence is a stalkwise weak equivalence and fibrations

are morphisms having the right lifting property with respect to trivial cofibrations.

Simplicial structure

We shall describe the simplicial structure on the category A°P.¥. For a simplicial sheaf
Z and a simplicial set K, we define the product 2" x K to be the simplicial sheaf, such
that for every n € N, its term (2 x K), is defined to be the coproduct [ [, % in .7.
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For a couple of sheaves (Z°,%), the function complex Map (2", %) is defined to be
the simplicial set which assigns an object [n] of A to the set Hompaop o (2 x A[n], %) .
Then, for every pair of simplicial sheaves (27, %) and every simplicial set K, one has

a natural bijection,
Hompop o (2" x K, %) ~ Hompop gets (K, Map (2,%)) , (2.18)

which is functorial in 2", % and K.

For each object U of ¢, we denote by Ay[0] the constant functor from A°P to .7
with value hy. Sometimes, we shall simply write hy instead of Ay[0] if no confusion
arises. For each n € N and each object U of €, we denote by A[n] the simplicial sheaf
Ay[0] x A[n]. Similarly, we denote by 0Ar[n] the simplicial sheaf Ag[0] x OA[n].

Notice that Yoneda lemma provides an isomorphism Map (Ay[0], %) ~ #/(U) for
every object U of ¢ and every simplicial sheaf . Hence, replacing 2~ by Ay[0] in

(2.18), we obtain an isomorphism
Hompaop #(Ay[0] X K, %) ~ Hompop 75 (K, % (U)) . (2.19)

Example 2.3.7. Let 2 be a simplicial sheaf on %nis. If K C L is an inclusion
of simplicial sets, then the induced morphism from 2 x K to 2 X L is a termwise
coprojection (see Deﬁnition. Indeed, for each natural n, the n-simplex (2" x K),,
is equal to the coproduct of sheaves [[ Zn, similarly, (2" x L), is equal to [[; Z.

In view of the inclusion K,, C L,, we have a canonical isomorphism

[ ()1 )

Lo\Kn
which allow us to deduce that (2" x K), — (2 x L), is a coprojection for all n € N.
We recall that % denotes the full subcategory of the pointed category %, generated
by objects of the form X, :=X II Spec(k), see page [5} We denote by .7, the pointed

category of .. The symbols V and A denote, respectively, the coproduct and the smash

product in .%. An elementary distinguished square in %, is a square of the form

9, : P+ (2.20)
Uy X,

J+
where @ is an elementary distinguished square in % of the form (2.17). We denote
by ¢4 nis the site consisting of ¢’y and the smallest Grothendieck topology generated

by the families of the form {j;: Uy — Xy, py: V4 — Xy} which are associated to
elementary distinguished squares of the form ([2.20)).
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Lemma 2.3.8. The category Shv(€; nis) s equivalent to the pointed category 7.

Proof. We consider the functor ®: Rad(%;) — Rad(%). defining an equivalence of
categories between Rad(%) and Rad(%)., see proof of Lemma [2.2.60 The lemma

follows after noticing that for a radditive functor F' in Rad(%)), we have that F is in
Shv(€y nis) if and only if ®(F) is in .. O

Definition 2.3.9. We denote by J#(%nis) the homotopy category of A°P.¥ localized
with respect to weak equivalences of the injective model structure. We write S, (%nis)

for the homotopy category of A°P., localized with respect to weak equivalences, see

INRE!

Definition 2.3.10. A simplicial sheaf 2~ in A°P.¥ is called A'-local if for any simplicial
sheaf ¢, the map

pI“T: Hom%(cgNis)(@, 3{) — Hom%((KfNis) (@ X Al, %) >

induced by the projection pry: % x Al — % is a bijection. A morphism of simplicial
sheaves f: 2 — % is an Al-weak equivalence if for any A'-local fibrant sheaf 2, the

morphism of simplicial sets
ff:Map(#,%) — Map (£, %)
is a weak equivalence.

Definition 2.3.11. We denote by J#(%xis, A') the homotopy category of A°P.% lo-
calized with respect to Al-weak equivalences. We write /%, (%xis, A') for the homotopy

category of A°P.7, localized with respect to A'-weak equivalences.

Example 2.3.12. The class of Al-weak equivalences in A°P.¥ coincides with the A-
class ¢l A(WNiS UPy1) (see Definition , where Wys is the class of local equiva-
lences with respect to the Nisnevich topology and P,: is the class of projections from
Ax[0] x Ag1[0] to Ax[0], for X € ¥ (see [7, Th. 4, page 378]). Similarly, the class
of Al-weak equivalences in A°P.%, coincides with the class cl A(Whis + UPa1 1), where
Whis,+ is the image of Wyjs through the functor which sends a simplicial sheaf 2
to the pointed simplicial sheaf 27 and Py1 4 is the image of Py through the same

functor.

Remark 2.3.13. The category J¢(¢+ nis) is equivalent to the pointed homotopy cat-
egory H.(%nis). Similarly, the category (%€ nis, A') is equivalent to the pointed
homotopy category 7 (s, A).

Definition 2.3.14. We denote by % the full subcategory of small coproducts of objects
hx in .7 for objects X in €. Similarly, we denote by € the full subcategory of small
coproducts of objects hx in . for objects X in %.
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We define the following sets of morphisms of simplicial sheaves
Iproj = {6AU[n] — AU[TL] | Ue%,ne N} . (2.21)

Notice that, by Example the morphisms 0Ay[n] — Ay[n] are termwise copro-
jections in A°PE for all U € € and n € N. We define the following sets of morphisms

of pointed simplicial sheaves
I3 ={0Aun]y — Ayln]y |U € €,n e N} . (2.22)

The morphisms Ay [n]+ — Ay[n]y are termwise coprojections in A€, for all U € €
and n € N

Lemma 2.3.15. For any object U € € and every finite simplicial set K (see Definition
, the object Ay[0] x K is finite relative to AP in the sense of Definition 2.1.4

Of [18/.

Proof. Let us fix an object U € € and a finite simplicial set K. Since K is finite, there
is a finite cardinal k such that K is k-small relative to all morphisms of A°P.%ets. We
claim that Ay[0] x K is k-small relative to all morphisms in A°P.. Indeed, let A be a
k -filtered ordinal and let

Zo—= 11— =>Zg—=--(B<A)

be a A-sequence of simplicial sheaves on %nis. Since filtered colimits of Nisnevich
sheaves (computed in the category of presheaves) are sheaves, we obtain a A-sequence

of simplicial sets,
2o(U) = 21(U) = -+ = Z3(U) = -~ (B < A).

Then, we have a commutative diagram

colim g« \Hompor o (Ap[0] x K, Z3) Hompop,o (AU[O] x K, colim ﬁ<)\%/3)

|

colim g« yxHompop zers (K, Z3(U)) Hompaop sts (K, colim g« %AU))

where the vertical arrows are bijections. Since K is k-small relative to all morphisms
of A°P Zets, the horizontal arrow at the bottom of the preceding diagram is bijective,

hence the top arrow is so. This completes the proof. O

Definition 2.3.16. Let Z be a category admitting filtered colimits. An object X of &

is called compact if the corepresentable functor Homg (X, —) preserves filtered colimits.

106



Example 2.3.17. Representable presheaves are compact objects in the category of
presheaves. In consequence, representable sheaves are compact objects in the category

of Nisnevich sheaves.

Remark 2.3.18. Let us consider the hypothesis of Lemma [2.3.15 The Ay[0] x K is
compact in A°P.¥ in the sense of Definition 2.3.16] Indeed, it follows from the fact

that K is a compact object in A°P.%ets and a representable sheaf is a compact object

in . (Example [2.3.17)).

Lemma 2.3.19. Every morphism in (Ipwj)-inj is a sectionwise trivial fibration.

Proof. Let f: 2" — % be a morphism in ([pr0j)-inj and let us fix an object U of €.
By the naturality of the isomorphism (2.19)), a commutative diagram

OA[n] 2 (U) (2.23)

in A°P.Zets, corresponds biunivocally to a diagram

0Ay[n]

AU [n] 4

in A°?.. As the left vertical arrow is an element of I;,j, the above diagram has a
lifting. Therefore, the bijection (2.19)) induces a lifting of (2.23)). O

The following corollary is a consequence of the small object argument. It will be

useful to show that the cofibrant resolution takes its values in the category A°P%.

Corollary 2.3.20. There ezists a functorial factorization (o, 3) on AP such that
for every morphism f is factored as f = B(f) o a(f), where B(f) is sectionwise trivial
fibration and o(f) is a termwise coprojection with terms form %, — 2, 11 %,, where
%, is an object of €.

Proof. By Lemma the objects 0Ay[n] and Ag[n] are finite relative to A°P.7.
Since the countable ordinal w is x-filtered, the small object argument provides a fac-
torization such that B(f) in (Iproj)-inj and a(f) is a countable transfinite composition
of pushouts of coproducts of elements of I.,;. By Example [2.3.7, every morphism
OAy[n] — Ayln] of I is a termwise coprojection in A°P¢. Therefore, Corollary
provides the desired factorization. ]
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We denote by QP the endofunctor of A°P.% which sends a simplicial sheaf 2" to
the codomain of the morphism «a () — 27), where ) is the initial object of A°P.%. The
endofunctor QP will be called cofibrant resolution. In particular, for every object
Z of A°P.#, the canonical morphism from QP™(2) to 2 is a sectionwise trivial

fibration.
Corollary 2.3.21. The functor QP takes values in A°PE.

Proof. Let 2" be a simplicial sheaf in A°P.¥. By Corollary the morphism of
simplicial sheaves ) — 2", where () is the initial object of A°P., factors into () —
QPI(Z) — 2 such that the terms of QP™I(2") are in €, that is, QP*(2") is in
AP O

Remark 2.3.22. As in Corollary [2.3.21] we also have a pointed cofibrant resolution
A°P.Z, — A°PE, . We shall denote it by the same symbol QP™ if no confusion arises.

Lemma 2.3.23. The class of A'-weak equivalences in A°P.%, is closed under finite

coproducts and smash products.

Proof. By Example the class of Al-weak equivalences in A°.%, is A-closed.
Then, it is closed under finite coproducts. Next, let us prove that this class is closed
under smash products. By the cube lemma (see [I8, Lemma 5.2.6]), one reduces the
problem to the unpointed case, i.e. for products in A°?.%. Using standard simplicial
methods, the problem is reduced to show that: for every Al-weak equivalence and
every simplicial sheaf 2 of the Ay[0] for U in €, the product f x idy is an Al-weak
equivalence. But it follows from Example and Lemma applied to the
functor (—) x id . O

2.3.2 Simplicial sheaves on Y,-schemes

In this section, we shall define geometric symmetric powers of (simplicial) Nisnevich
sheaves as left Kan extensions. The smallness condition on an admissible category will
allow us to express a geometric symmetric power in terms of colimits. We follow the
ideas of Voevodsky [40] in order to prove that geometric symmetric powers preserve
Al-weak equivalences between simplicial Nisnevich sheaves which termwise are coprod-
ucts of representable sheaves. We also prove the existence of the left derived functors

associated to geometric symmetric powers.

Let € be an admissible category of schemes over a field k. For an integer n > 1,
the category €>" denotes the category of functors ¥,, — &, where ¥, is viewed as a

category. We recall that € can be viewed as the category of ¥,-objects of €.
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Definition 2.3.24. Let X be an ¥,-object on ¥ and let x € X. The stabilizer of x is

the subgroup stab(z) C ¥, consisting of elements o € ¥,, such that o.z = .

Definition 2.3.25. A family of morphisms {fi: U; — X}icr in €% is called %,-
equivariant Nisnevich covering if each morphism f;, viewed as a morphism of %, is
étale and we have the following property: for each point z € X, viewed as an object
of €, there exist an index ¢ € I and a point y € U; such that: f;(y) = z, the canonical
homomorphism of residual fields k(z) — k(y) is an isomorphism, and the induced

homomorphisms of groups stab(y) — stab(x) is an isomorphism.

Let %”1\%5’ be the site consisting of €>» and the Grothendieck topology formed by
the ¥,-equivariant Nisnevich coverings. We denote by .#>» the category of sheaves on
‘Kﬁ’s‘ We point out that .#>" is not the category of ¥,-objects in ..

Remark 2.3.26. For n = 1, a ¥,-equivariant Nisnevich covering is a usual Nisnevich

covering in €.

Definition 2.3.27. A Cartesian square in €>" of the form (2.17)) is an elementary
distinguished square if p is an étale morphism and j is an open embedding when we

forget the action of ¥,,, such that the induced morphism of reduced schemes
p|p*1(X—U)red : pil(X - U)red — (X - U)red
is an isomorphism.

Remark 2.3.28. Notice that when n = 1, the above definition coincide with the usual

definition of an elementary distinguished square.

Let us keep the considerations of Definition [2.3.27, An elementary square in €>»
of the form (2.17)) induces a diagram

Ay [0]+ V Ay [0]+

Ay [0+ A A4

Ayl0]+ vV Ay [0]+

Definition 2.3.29. We denote by K¢ the pushout in A°P.#>» of the above diagram
and denote by Gy, Nis the set of morphisms in €*n of canonical morphisms from K o)

to Ax[0]+. The set Gy, nis is called set of generating Nisnevich equivalences.

On the other hand, we denote by Py, 1 the set of morphisms in €* which is
isomorphic to the projection from Ax[0]1 A Ag1[0]4 to Ax[0]4, for X in €>». By
Lemma 13 [7, page 392], the class of Al-weak equivalences in A°P.%>» coincides with
the class

cla (s, Nis U Py, a1) - (2.24)
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We denote by Const: € — €>» the functor which sends X to the ¥,-object X,
where ¥, acts on X trivially. Let colimy, : €*n — € be the functor which sends X
to colimy, X = X/¥,. By definition of colimit, the functor colimy, is left adjoint to
the functor Const. It turns out that the functor Const preserves finite limits and it
sends Nisnevich coverings to X,-equivariant Nisnevich coverings. In consequence, the
functor Const is continuous and the functor colimy;, is cocontinuous.

Let A,: € — €>" be the functor which sends X to the nth fold product X*".

Then, the endofunctor Sym" of ¢ is nothing but the composition of colimy,, with A,.

Proposition 2.3.30. The cocontinuous functor colimy, : %”1\%5’ — %Nis 5 also contin-

wous. In consequence, it is a morphism of sites.
Proof. See [7, Prop. 43]. O

The previous proposition says that the functor colim y,, is a morphism of sites, then

it induces an adjunction between the inverse and direct image functors,
(colims, )y : .7 = .7 : (colimy, )*.

Hence, one has a commutative diagram up to isomorphisms

colimy,,

“n i (2.25)
h h
P 54

(colimx;,, )*

where h is the Yoneda embedding. We denote by
Yt APFE s AP

the functor induced by (colimy )* defined termwise. From the diagram (2.25)), we

deduce that =, preserve terminal object, then it induces a functor
Yyt APFE —y AP,

We write A,, for the left Kan extension of the composite € RN LN along
the Yoneda embedding h: 4 — .. Denote by

Ap: A%P.F —y AP pm

the functor induced by A,, defined termwise. Since A, preserves terminal objects, the

functor A, does so, hence it induces a functor

At AP, —5 AP FEn
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2.3.3 Geometric symmetric powers

Let ¢ C .#ch/k be an admissible category. Fix an object X of € and an integer n > 1.
By definition of an admissible category, € is closed under finite products and quotients
under finite groups. Then nth fold product X *™ is an object of €, hence, the quotient
X*"/%,, is also in €. Denote this quotient by Sym™(X). Then, we have a functor
Sym": ¥ — €. It is immediate to observe that Sym" (Spec(k)) is isomorphic to the
point Spec(k) for n > 1. By convention, Sym® will be the constant endofunctor of €
which sends an object X of € to the point Spec(k).

Let us fix n € N. Since % is a small category and A°P.¥ is cocomplete, Theorem
3.7.2 of [4] asserts the existence of the left Kan extension of the composite

h

T NG

along the Yoneda embedding h.

Definition 2.3.31. We denote by Symy the above left Kan extension, and call it the

nth-fold geometric symmetric power of Nisnevich sheaves.

Explicitly, Symy is described as follows. For a sheaf 2" in ., we denote by (h | 27)
the comma category whose objects are arrows of the form hy — 2 for U € ob (%).
Let Fo-: (h | &) — . be the functor which sends a morphism hy — 2 to the
representable sheaf hgymnyy. Then, Symg(% ) is nothing but the colimit of the functor
Fy.

Definition 2.3.32. The endofunctor Symy of Definition [2.3.31)induces an endofunctor
of A°P.. We call it the nth-fold geometric symmetric power of simplicial Nisnevich
sheaves. By abuse of notation, we denote this endofunctor by the same symbol Symg

if no confusion arises.

Example 2.3.33. Fix a natural number n. For each k-scheme X in %, the nth fold
geometric symmetric power Symg (hx) of the representable functor hx coincides with
the representable functor hgym»x. The section Symy (hx)(Spec(k)) is nothing but the

set of effective zero cycles of degree n on X.

Remark 2.3.34. Since Symy : ./ — % preserves the point Spec(k), it induces an

endofunctor of .%, and hence an endofunctor of A°P.%,.

Warning 2.3.35. As many statements hold similarly for pointed and unpointed (sim-
plicial) sheaves, we shall use the same symbol Symy to denote the nth fold geometric

symmetric power both pointed and unpointed (simplicial) sheaves if no confusion arises.

Lemma 2.3.36. Left adjoint functors preserves left Kan extensions, in the following
sense. Let L: & — &' be a left adjoint functor. If LangF is the left Kan extension of
a functor F': € — & along a functor G: € — 2, then the composite L o LangF is the
left Kan extension of the composite L o F' along G.
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Proof. See [33, Lemma 1.3.3]. O

Lemma 2.3.37. For every natural n, the endofunctor Symy of A°P. is isomorphic
to the composition yn 0 Ay. Similarly, Symy as an endofunctor of A°P.% is isomorphic

to the composition vy, 4+ 0 Ay 4.

Proof. Since the functors Symy, v, and A, are termwise, it is enough to show that
Symy, as a endofunctor of ., is isomorphic to the composition of A,, with (colimy, )*.
Indeed, as the functor (colimy,,)* is left adjoint, Lemma [2.3.36| implies that the com-

posite

(colimx;,, )*

S SEn

52 (2.26)
is the left Kan extension of the composite

@ An S h N (colimy,, )* 7

along the embedding h: € — .. Now, in view of the commutativity of diagram ([2.25)),

the preceding composite is isomorphic to the composite

Ay colimyx,,

& &>n ¢ 7.

e . . Sym” . . . .
but it is isomorphic to the composite € s € M , which implies that the composite

(2.26) is isomorphic to Symy, as required. O

We denote by € the full subcategory of coproducts of pointed objects of the form
(hx)+ in .7 for objects X in €. For every object X in ¥, the pointed sheaf (hx)4 is
isomorphic to h(x_ ). Indeed, (hx) is by definition equal to the coproduct hx IThgpec(r)
and this coproduct is isomorphic to the representable functor % x1gpec(x) Which is equal
to h(x,)- )

Similarly, we denote by ‘KE" the full subcategory of coproducts of pointed objects
(hx)y in Z> for objects X in €.

Theorem 2.3.38 (Voevodsky). Let f: 2 — % be a morphism in APE,. If f is an

Al-weak equivalence in A°P.7,, then Symg(f) is an Al-weak equivalence.

Proof. By Lemma Symyg is the composition 7y, 4+ o Ap 1. The idea of the proof
is to show that v, and ), i preserve Al-weak equivalences between objects which
termwise are coproducts of representable sheaves. The functor A, 1 sends morphisms
of Whiis + U Pnis + between objects in AOP%ZF to Al-weak equivalences between objects
in A"p‘ﬁ:‘?”. Since A, + preserves filtered colimits, Lemma 2.20 of [41] implies that A, 1
preserves Al-weak equivalence as claimed. Similarly, in view of the class given in ,
we use again Lemma 2.20 of loc.cit. to prove that v, sends Al-weak equivalences

between objects in AOP%E” to Al-weak equivalences, as required ]
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We define the functor ®: A°PE, — . (bnis, A') as the composite
APE, — AP.F, — A (Cnis, A1),

where the first arrow is the inclusion functor and the second arrow is the localization

functor with respect to the Al-weak equivalences.

Lemma 2.3.39. Let € be an admissible category. The functor
D: APE, — H(Cnis, A1)

is a strict localization, that is, for every morphism f in H#i(6nis, AY), there is a mor-

phism g of A°P€, such that the image ®(g) is isomorphic to f.

Proof. By Theorem 2.5 of [30, page 71], the category % (%nis, A!) is the localization
of the category %, (%nis) with respect to the image of Al-weak equivalences trough the
canonical functor. Then, it is enough to prove that the canonical functor from A°P%,
to . (6nis) is a strict localization. Indeed, let f: 2" — % be a morphism of pointed
simplicial sheaves on the site énis representing a morphism in 4%, (%nis). The functorial

resolution QP gives a commutative square

Qei(y)

QUroI( ) QU

v 7 4

where the vertical arrows are object-wise weak equivalences. Since the object-wise weak
equivalences are local weak equivalences, the vertical arrows of the above diagram are

weak equivalences. This implies that f is isomorphic to QP™(f) in S (€xis). Moreover,
by Corollary [2.3.21], the morphism QP™I(f) is in A°PZ,. O

Corollary 2.3.40. For each integer n > 1, there exists the left derived functor LSymy

from H,(6xis, AY) to itself such that we have a commutative diagram up to isomorphism

Sym7”

APE, ! AP 7, (2.27)
P
FAGIW S o Ho(Cnis, A1)

where the right arrow is the localization functor.
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Proof. By Theorem [2.3.38} the functor Symy preserves Al-weak equivalences between

objects in A°P%¢, . Hence, the composite
_ Sym?” 1
AP, — APS, — A (Cnis, A)

sends A'-weak equivalences to isomorphisms. Then, by Lemma [2.3.39| there exists a
functor LSymy such the diagram (2.27) commutes and for every simplicial sheaf 2,
the object LSymy (2") is isomorphic to Symy (QP™I(2")) in . (Gnis, A'). O

2.4 Stable motivic category

In this section % will denote a small admissible category contained in the category
of quasi-projective schemes over a field k of arbitrary characteristic. The letter . to
denote the category of Nisnevish sheaves and the category A°P.¥ is the category of
pointed simplicial sheaves studied in the previous sections. We write S' for pointed
simplicial circle, i.e. the cokernel of the morphism OA[l]; — A[l]4 in A% Fets,. We
shall denote by T' the smash product S*A(G,,,1). There is an isomorphism T ~ (P!, 00)
in S, (6is, AY), cf. [30, Lemma 3.2.15].

Generalities

We denote by Spty(k) the category of symmetric T-spectra on the category A°P.Z,.
The category Sptr(k) is naturally equivalent to the category of left modules over the
commutative monoid sym(7):=(Spec(k),T,T"?,T"3,...). For each n € N, there is
an evaluation functor Ev,, from Spt; (k) to A°P.%, which takes a symmetric T-spectrum
Z to its nth slice %Z,. The evaluation functor Ev,, has a left adjoint functor denoted
by F,. The functor Fj is called suspension functor, and it is usually denoted by »5°.

This functor takes simplicial sheaf 2" to the symmetric T-spectrum
(2, 2 NT, 2 NT"?,..).

For a scheme X in €, we write £3°(X ) instead of X3°(Ax[0]4+). A morphism of T-
spectra f: 2 — % is a level Al-weak equivalence (a level fibration) if each term f,
is an Al-weak equivalence (a fibration) in A°.7, for all n € N. We say that f is a
projective cofibration if it has the left lifting property with respect to both level Al-
equivalences and level fibrations. The class of level Al-weak equivalences, the class of
the level fibrations and the class of projective cofibrations define a left proper cellular
model structure on Spty(k) called projective model structure, see [19]. Let I (resp.
J) be the set of generating (resp. trivial) cofibrations of the injective model structure
of A%, The set Ir:=J,5q Fn(l) (resp. Jr:=J,>o Fn(J)) is the set of generating
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cofibrations (resp. trivial cofibrations) of the projective model structure of Spty(k), cf.
[19].

In order to define the stable model structure on Spty(k), one uses the Bousfield
localization of its projective model structure with respect to a certain set of morphisms
of symmetric T-spectra, so that the functor — A T': Spty (k) — Spty(k) becomes a
Quillen equivalence. We shall define this set as follows. For every simplicial sheaf 2
in A°P.%, and every n € N, we denote by ¢ : Fr,11(2 AT) — F,(2°) the morphism

which is adjoint to the morphism
L NT — Evp1(Fo(2)) = Zps1 Xe, (ZAT),
induced by the canonical embedding of 3; into %,,. We set
S::{ 2| 2 e dom (I) Ucodom (I),n € N} :

The stable model structure on Sptp(k) is the Bousfield localization of the projective
model structure on Sptp(k) with respect to S, cf. [19]. A S-local weak equivalence
will be called a stable weak equivalence. The stable model structure on Spty(k) is left
proper and cellular. The functor ¥ : A%.%, — Sptr(k) is a left Quillen functor, see
loc.cit. For any two symmetric T-spectra 2" and %/, its smash product 2" Agym(ry ¥

is defined to be the coequalizer of the diagram
X Nsym(T)NY = XN,

induced by the canonical morphisms 2" A sym(7") — 2 and sym(T) A% — # . The
smash product of spectra defines a symmetric monoidal structure on Spty(k). We
denote by SHr(k) the homotopy category of the category Sptr(k) with respect to

stable Al-weak equivalences.

Chain complexes

Let Ab be the category of Abelian groups. The classical Dold-Kan correspondence

establishes a Quillen equivalence
N : AP Ab = chy(Ab) : T,

between the category of simplicial Abelian groups and the category of N-graded chain
complexes of Abelian groups. Let &/ be an Abelian Grothendieck category. We write
chy () for the category of N-graded chain complexes on 7. The above adjunction
induces an adjunction

N:A®o = chy(o/):T. (2.28)

The category ch; (<) has a monoidal proper closed simplicial model category such that

the class of weak equivalences are quasi-isomorphisms and such that the adjunction
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becomes a Quillen equivalence [23, Lemma 2.5|. For any n € Z, we have the
translation functor chy (%) — chy () which sends a chain complex C' to C[n| defined
by (C[n]);:=Cp4; for i > 0. For each n > 0, we denote by Z[n| the chain complex

o= 0=2Z—-0—=---—0

concentrated in degree n. If the symbol ® denotes the tensor product of N-graded

Xn

chain complexes of Abelian groups, then, for n € N, we have Z[n] = Z[1]*". Hence,

the symmetric group 3, acts naturally on Z[n|, and we have the symmetric sequence
sym(Z[1])) = (Z[0], Z[1}, Z[2), )
in chy (Ab). For any chain complex Cy in ch_ (), we have
Cy ® Z[n] = Ci[—n].

Let Sptyp)(chy(A)) be the category of symmetric Z[1]-spectra. Its objects are
symmetric sequences (Cp,Cy,...,Cyp ...) where each C,, is a chain complex in chy (A)
together with an action of the symmetric group ¥, on it. For a symmetric Z[1]-spectrum

C, we have structural morphisms of the form C,, ® Z[1] — C,41 for n € N.

2.4.1 Rational stable homotopy category of schemes

In the next paragraphs, we shall recall some results on rational stable homotopy cate-
gories of schemes over a field. Here, SH7(k) will be the stable A'-homotopy category of
smooth schemes over a field k constructed in [22]. One result that is very important is
a theorem due to Morel which asserts an equivalence of categories between the rational
stable homotopy category SHr(k)g and the rational big Voevodsky’s category DM(k)q.
This will allows us to show the existence of transfers of some morphisms in SHr(k)g
that will be studied in Section [£.3.1] and [4.3.2

Let .7 be a triangulated category with small sums and with a small set of compact
generators [3I]. An object T in .7 is said to be torsion (resp. wuniquely divisible)
if for every compact generator X in 7, the canonical morphism from Hom (X, T)
to Hom#(X,T) ®z Q is the zero morphism (resp. an isomorphism). Let Z,, (resp.
J) be the triangulated subcategory of .7 generated by the torsion objects (resp.
uniquely divisible objects). The full embedding functor 9y — 7 has a left adjoint
Lo: 7 — Jp and its kernel is nothing but Z,,. Then, Jg is equivalent to the Verdier
quotient .7/ Fior (see [34, Annexe A]). We denote by SHr(k)g the Verdier quotient
of SHr(k) by the full-subcategory SHr(k)ior generated by compact torsion objects.
We recall that a morphism of symmetric T-spectra f: 2~ — % is a stable Al-weak

equivalence if and only if the induced morphism
f.: Homgy, 1) (239(57" AGE AUL), 3{) — Homgy, () (E%O(S’“ AGE AUL), @/)
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is an isomorphism of Abelian groups for all couples (7, s) € N? and all smooth schemes
U over k (see [18, Th. 1.2.10(iv)].

A morphism of T-spectra f: 2~ — % is called rational stable A'-weak equivalence
if the induced morphism f, ® Q is an isomorphism of Q-vector spaces for all couples
(r,5) € N2 and all smooth schemes U over k. The localization of SH7(k) with respect

to the rational stable Al-weak equivalences coincides with SHr(k)g.

2.4.2 The motivic Hurewicz functor

Let AbY.. be the category of Nisnevich Abelian sheaves with transfers on the category
of smooth schemes .m/k over a field k c.f. [27]. Let 7 be either the h-topology
or gfh-topology on the category of k-schemes of finite type. We write AbY for the
category of 7-Abelian sheaves with transfers on the category of k-schemes of finite
type. We consider the A!-localized model category of the projective model structure
on chy (AbY,) and in chy (AbY). Let DM(k) be the homotopy category of the category
of symmetric T-spectra Spty(chy (AbY,)) with respect to stable Al-weak equivalences.
If the characteristic of k is zero, then DM(k) is equivalent to the homotopy category
of the category of modules over the motivic Eilenberg-MacLane spectrum [35]. We
denote by DM(k), the homotopy category of the category of symmetric T-spectra
Spty(chy (AbY)) with respect to stable Al-weak equivalences. We write DM, (k) for the
localizing subcategory of DM (k) generated by the objects of the form X¥Z. (X )(m)[n]
for k-smooth schemes of finite type X and for all couples (m,n) € Z, see [6]. One has

an adjunction of triangulated categories
Hu : SHr(k) = DM(k) : H,

where Hu is the motivic Hurewicz functor and H is the FEilenberg-MacLane spectrum
functor [29], [6]. This adjunction induces an adjunction of triangulated categories with
rational coefficients

Huq : SHr(k)g = DM(k)g : Hg -

We write SU for the sphere T-spectrum. Let € : S — S° be the morphism of spectra
induced by the morphism G,, — G,, which comes from the homomorphism of k-
algebras k[z,z7!] — k[z,r7!] given by # — z~!. Notice that ¢? = id. We set
e :=(°?2 —1)/2 and e_:=(¢°? + 1)/2. Notice that e, and e_ are both idempotent.
Since SHr(k)g has small coproducts (see [31]), the triangulated category SHr(k)q is
pseudo-abelian, hence the morphisms e; and e_ have image. We put S&, 4 i=imey and

S&_ :=ime_. Then, they induce two functors
SHr(k)g — SHr(k)g+
SHr(k)g — SHr(k)o,-
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defined by £~ — %ALS&’+ and 2" — %ALS&’_ respectively. Since S& = S?Q,+EBS&7_,

it induces a decomposition
SHr(k)g = SHr(k)g+ x SHr(k)g,- -

Remark 2.4.1. For the existence of the above decomposition of SHr(k)g, we have
only used the fact that 2 is invertible in Q. In fact, this decomposition is true for

triangulated category SHy(k)z1) with Z[3]-coefficients.
2
The following theorem was predicted by F. Morel.

Theorem 2.4.2. Suppose that —1 is a sum of squares in k. Then we have an equiva-
lence of categories SHr(k)g ~ DM(k)q.

Proof. The fact that —1 is a sum of squares in k implies that the category SH7(k)qg,+
coincides with SHr(k)g. Hence, the theorem follows from Theorem 16.1.4 and Theorem
16.2.13 in [6]. O

Let Dyi(k) be the homotopy category of the category of symmetric T-spectra
Spt(chy (Abyis)) with respect to stable Al-weak equivalences. The category of Beilin-
son motives DMg (k) is the Verdier quotient of Dy1(k)g by the localizing subcategory
generated by Hgp-acyclic objects, where Hy is the Beilison motivic spectrum, see [6l [34].

If —1 is a sum of squares in k, then we have a diagram of equivalences of categories:

SHp (k) g =———— Dp1 (k) =————— DM (k) =——— DM(k)q

DMy, (k)

DM (k)

For the proof of these equivalences see [0, 29]. In consequence, we obtain the following

corollary.

Corollary 2.4.3. If —1 is a sum of squares in k, then we have an equivalence of
categories SHr(k)g ~ DMy (k)qg.

Proof. See [0]. O
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Chapter 3

Geometric symmetric powers in
motivic categories

In this chapter, we study the Kiinneth towers of geometric symmetric powers of mo-
tivic spaces defined in Section We also study geometric symmetric powers for
motivic symmetric spectra, see Section Finally, we study the differences between
the categoric and geometric symmetric powers of presheaves represented by particular
schemes, such as, finite Galois extensions, the double point, affine line and affine plane,
see Section We shall start this chapter giving some preliminaries on categoric

symmetric powers, see [13].

3.1 Categoric symmetric powers

Symmetric powers appear in many areas of mathematics as an important tool, for
instance the singular homology of a CW-complex can be understood as a homotopy
group of infinite symmetric powers. Let us give some ideas. If (X,z) is a pointed
topological space, then for each integer n > 0, we have the n-fold symmetric power

Sym"™ (X, x). We have a sequence of embeddings
Sym!(X,z) — Sym?(X,z) — --- = Sym"(X,z) < - - -
and it induces an infinite symmetric power
Sym™ (X, ) :=colim ,enSym"™ (X, x) ,

which plays an important role in the Dold-Thom theorem.

For a set X, let N[X]| (resp. Z[X]) be the free commutative monoid (resp. free
Abelian group) generated by X. If z is an element of X, we write N[z] instead of
N[{x}], similarly for Z[z]. Notice that the elements of N[z] have the form m - x with
m € N. Let n be a positive integer. The nth fold symmetric power Sym™(X):=X"/%,
can be seen as the set of linear combinations > ; z; € N[X], where each z; is an

element of X.
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Lemma 3.1.1. Suppose that X is a finite set, say it has a cardinality equal to r > 1.

r—&—z—l) ]

Then Sym™(X) has a cardinality equal to (

Proof. Tt follows after noticing that Sym”™(X) is bijective to the set of all combination

with repetition of r elements choose n. O

Example 3.1.2. If X = {a,b,c} is a set with three elements, then Sym?(X) is the set
{a+a, a+b,b+b,b+c, c+ec, c+a},
which has (3%71) = 6 elements.
For a pointed set (X, ), there is an isomorphism of monoids
Sym™ (X, z) ~ N[X]/N[z],
hence, we have an isomorphism of Abelian groups
Sym™ (X, z)" ~ Z[X]/Z[z] .
where the left-hand side is the group completion of Sym* (X, x).

The Dold-Thom theorem asserts that for any pointed connected CW complex (X, %),

there is a weak equivalence

Sym™(X, ) = [[ K(Ha(X,Z),n),

n>1
where H,,(X,Z) is the singular homology of X; or alternatively, an isomorphism

T (Sym™ (X, ) ~ H,(X,Z),

for all n > 1. Removing the connectedness assumption on X, the Dold-Thom theorem

can be reformulated by stating an isomorphism
T (Sym™ (X, ) %) =~ Hu(X,7Z),

for all n > 0, where H,(X,Z) is the reduced singular homology of X.

3.1.1 Pushout-products

Assumption 3.1.3. Unless otherwise specified, we shall assume that the monoidal
product A of a symmetric monoidal category with pushouts preserves pushouts on
both sides, i.e. for any two objects X and Y, the functors X A — and — A'Y preserve
pushouts. Similarly, the monoidal product A of a symmetric monoidal category with

finite colimits will always preserve finite colimits on both sides.
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For example, these assumptions are satisfied when the monoidal category in question
is closed, [26l, p. 180].

Definition 3.1.4. Let € be a symmetric monoidal category with pushouts. We denote
by A its monoidal product. We recall that, for any two morphisms f : X — Y and
f': X' =Y in €, the box operation of f and f’ is the pushout

a(f, f/)ZZ(X /\Y/) V xAX! (Y /\X/) .

The universal morphism fOf" : O(f, f) = Y A Y’ is called pushout-product of f and
f’, which fits into the following pushout diagram:

XA X fAId s

Y AX (3.1)

idxAf/

XAY'

fAidyy

Proposition 3.1.5. The pushout-product O is commutative and associative. More
precisely, if f: X =Y, f/: X' =Y and f" : X" — Y" are three morphisms in €,

then there exist a canonical isomorphism of commutativity
fof = f'of, (3.2)
and a canonical isomorphism of associativity
(fof)of” = fofof”). (3:3)

Proof. Let f: X =Y, f': X' = Y'and f”: X” — Y” be three morphisms in €. Since
the monoidal product A is symmetric, the diagram is isomorphic to the following

diagram
idysAf
X'NX X'AY (3.4)
f/Aidx
Yinx o(f’, f)

for

!
idy//\f Y'any
Then, we get the isomorphism ({3.2]), proving thus the commutativity of 0. Let us prove

that associativity of 0. Indeed, the morphisms f, f’ and f” induce a commutative
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diagram

XAX' ANX" YAX' AX

/

XANX'AY" YAX' ANY"

XAY' ' AX" YAY' AX"

/

XAY' AY" YAY' AY"

(3.5)
The colimit of the diagram

XAX' AX" YAX' AX"

/

XAX' ANY" YANX'ANY"

XAY' ' AX" YAY' AX"

/

XAY' AY”
(3.6)

can be computed by means of pushouts. For instance, considering the vertex Y AY'A X"
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of diagram (3.6)), we deduce a diagram

YAX'ANXYN xpxiaxn (X AY' ANXT) Y AX'ANY")YN xaxiayrn (X AY AY")

YAY' ' AX"
(3.7)

whose pushout is isomorphic to the colimit of diagram (3.6)). Similarly, considering the
vertex X AY' AY”, we obtain a diagram

Y AY'AX") Ny pxinxr (Y AX AYT)

(XAY'AX") N xpxiaxr (X AX AYT)

XAY' AY"
(3.8)

whose pushout is isomorphic to the colimit of the same diagram. Since the monoidal

product A commutes with pushouts, we get the following canonical isomorphisms

YAX'AX") \/ (XAY'AX") ~O(f, f)AX",
XAX'AX"

YAX'AY")y \/ (XAY'AY") =~ O(f, f) AY”,
XAX'NY!

(XAY'AX") \/ (XAXAY") ~ XD, 1),
XAXIN\NX

YAY'AX") \/ (YAX'AY") =Y AD(f, ).
YAX/AX"
Then, the diagram ({3.7)) is isomorphic to the diagram

o, f)n X" o(f, fyny” (3.9)

YAY' AX"

and the diagram (3.8]) is isomorphic to the diagram

Y AT, ) (3.10)

XA, 1)

XAY' AY"
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Finally, from diagram (3.5), we deduce that the diagram (3.9) fits into a pushout

diagram

o(f, f)n X" a(f, fynyY”

YANY' ANX" Dgﬂfﬁﬂﬁ

(fafof”

N
YANY'ANY”
whereas the diagram (3.10|) fits into a pushout diagram

X Ao(f, f) Y Ao(f, f")

XAY' AY"

a(f. f'of”)

N
YAY' AY"

Thus, we obtain an isomorphism O(fOf’, /") ~ fo(f'of”). Therefore, we have an
isomorphism (3.3)), as required. O

Corollary 3.1.6. Let ¥ be a symmetric monoidal category with pushouts. Then,
the pushout-product O is a symmetric monoidal product in the category of morphisms
Map (%).

Proof. Since the monoidal product A of € preserves pushouts, for every object X of

%, we have canonical isomorphisms
XAND~0~0NX,

where () is the initial object of 4. Then, the canonical morphism () — 1 is the unit
object for the category Map (%), where 1 denotes the unit object of ©. Indeed, let
f:X — Y be a morphism in €. Replacing § — 1 by f’ in diagram (3.1)), we deduce
that O(f,0 — 1) is isomorphic to X, and fO(@ — 1) is isomorphic to f. Hence, the
corollary follows from Proposition Notice that the pentagon and the coherence
axioms follows from the axioms of the monoidal structure on A and the universal

property of pushout. ]
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By virtue of Proposition for finite collection {f; : X; — Y;|i = 1,...,n} of

morphisms in %, we can omit the parentheses on the product

(- ((1Of)Of3)0---Ofn-1)0fn

and write simply
A0 Ofn:0(f1,e oy fn) 2 YAA - AY,.

For a morphism f : X — Y in ¢ and integer n > 2, we shall write O™ (f) = a(f,---, f)
and fP" = fO---0Of. By convention, we write 0'(f) = X and f7! = f.

3.1.2 Kinneth towers

Let 2 = {0, 1} be the category with two objects and one non-identity morphism 0 — 1.
We denote by 2" the n-fold cartesian product of categories of 2 with itself. Observe

that the objects of 2™ are n-tuples (a1, ..., a,), where each a; is 0 or 1, and a morphism
from (a1,...,a,) to another n-tuple (@}, ..., a},) is determined by the condition a; < @}
forallti=1,...,n.

Remark 3.1.7. Let % be a category. The giving of a functor K : 2 — % is the same
as giving two objects K(0) = X, K(1) =Y and a morphism K(0 — 1) = f from X to
Y. We shall denote K by K(f).

Definition 3.1.8. Let % be a category. For any morphism f: X — Y in % and any
integer n > 1, let K™(f) be the composition

2" 56" B E

of the n-fold cartesian product of the functor K(f) : 2 — % and the functor A : € — €
sending an object (X7i,...,X,) to the product Xj A--- A X,,.

Example 3.1.9. For a morphism f : X — Y in a category €, the functor K2(f) can

be seen as a commutative square

XNX YANX

XANY YANY

induced by f, and the functor K3(f) can be thought as a commutative cube:
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XANXNANX YANXANX

XNXANY YANXANY

XNANYANX YANYANX

XANYANY YANYANY

(3.11)

Definition 3.1.10. For any 0 < ¢ < n, we denote by 27 the full subcategory of 2"
generated by n-tuples (ai,...,ay) such that a3 + -+ + a, < i. We shall denote by
K}'(f), the restriction of K"(f) to 27"

Example 3.1.11. Let f : X — Y be a morphism. If n = 2, then KZ(f) consists of
the object X A X, KI(f) is the diagram

XNX YANX

XANY

and K2(f) = K2(f). If n = 3, then KJ(f) is X3, K}(f) is the diagram:
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XANXNX YANXNANX

XNXAY
XANYANX
K3(f) is the diagram:
XNXANX YANXANX
XANXAY YANXAY
XANYANX YANYANX
XANYANY

and K3(f) = K3(f), see diagram (3.11)).

Remark 3.1.12. Let 0 < ¢ < n be two indices. The category 2 can be seen as a poset
with 2 elements. Then, the category 2" is a poset with the product order, and the

category 27 is a subposet with the restricted partial order of 2".

Lemma 3.1.13. For every positive integer n, the symmetric group ¥, acts naturally

on 2! foralli=1,...,n.
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Proof. Let us fix an index 0 < ¢ < n. Any permutation ¢ € ¥, induces an automor-
phism o : 2" — 2" taking an n-tuple (a1,...,a,) to (ag(1),---,a,(1)). Notice that if
ai+---+ap < i, then one has as(1)+- - +ag;,) = a1 +---+an < i, so the subcategory
27 is invariant under the action of ¥,,. Thus, every automorphism o : 2" — 2" induces

an automorphism o : 2 — 27 for 1 <1i < n. O

Proposition 3.1.14. Let € be a symmetric monoidal category and let f: X — Y be
a morphism in €. Suppose that the for every inder 0 < i < n, the ith fold pushout-
product f9 of f exists. Then, for every 0 < i < n, the colimit of the diagram KI(f)

exrists.

Proof. The idea is to use induction on n. Notice that the case when n is equal to 1 or 2,
the colimit of each K['(f) exists. Now, suppose that n > 2 and the statement is true for
positive integers strictly less than n. Let r,; = (TZ) and let us choose r permutations
01,...,0p,, of ¥, that represent the elements of the quotient X, /(X3,—; x ¥;). Let
0 < j < i be Notice that identifying an object (a;...,a;) of 2;- with an object of the
form (0,...,0,a1,...,a;) in 27/, we get an inclusion {0} x 2% — 27. Let S&i) be the

Tn,i

universal morphism of posets IT,™ ({0}~ x 23) — 27 induced by the composites

Ok

e
{0} x 2i 2" 2,

for k=1,---,7,;. The commutative square
s (foy w2l ) e T ({0 x 20)

n n
i—1,i fi,i

n n
2i—1 21’

is a pushout in the category of posets. Therefore, the above square allows one to

construct inductively a cocartesian square

[T (X709 A colim K, (1)) b (XN Ay (3.12)
colim K" ;(f) colim K*(f)
as required. O

Let f: X — Y be a morphism in a symmetric monoidal category with pushouts.

For each index 0 < i < n, we set
0 (f) = colim K7*(f)
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Since K is the diagram consisting of one object X\, we have Of = X"". On the
other hand, the nth tuple (1,1,...,1) is the terminal object of 2", and K'(f) = K"(f);

hence we have O (f) = Y. Then, the sequence of subdiagrams
Ko(f) C Ki'(f) € --- C KR(f),
induce a sequence of morphisms in &,

XM =0j(f) = 07 (f) = - = o) =Y,

n

whose composite is nothing but the n-fold product f"* : X\ — Y/ of f. The above

sequence will be called Kiinneth tower of f/\™.

Corollary 3.1.15. Let € be a symmetric monoidal category with pushouts. Then, for
every morphism f in €. The symmetric group ¥, acts naturally on each object OF(f)

foralli=1,... n.

Proof. Let us fix an index 0 < ¢ < n. By Lemma [3.1.13] the symmetric group ¥, acts
on the poset 2, hence this action induces an action on K'(f). For any morphism

(a1,...,an) = (af,...,al) in {0,1}", we have a commutative square

Kz"n(f)(ala“'van) = Kztn(f)(aa(l)a'”vao(l))

K (f)(ay, ..., ap)

Kz‘n(f)(a;(l)v . 7‘1:7(1))

Then, by the universal property of colimit, there is a unique automorphism ¢, of O}

such that we have a commutative diagram

b

where the vertical morphisms are the canonical morphism. Moreover, the map ¢ :
Y, — Aut(O7(f)) given by o — ¢, is a homomorphism of groups. This gives an action
of ¥y, on O7(f). O

Definition 3.1.16. Let (¢, A) be a symmetric monoidal category. For an object X of
¢, we shall write Sym”(X) for the quotient X"\"/%,,, if it exists, and call it the nth

fold (categoric) symmetric power of X.
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Let € be a symmetric monoidal category with finite colimits. The previous Corol-
lary allows to take the quotient of OF(f) by the symmetric group %, for 0 < i < n.
We write

07 (f): =07 (f) /2 -
In particular, we have OF(f) = X"/%,, = Sym"X and O)(f) = Y"/3, = Sym"Y.

Thus we have a following commutative diagram,

fAn

XM= O§() T () O () — S O = V™

Sym" X = 0y (f) o (f) s ——0O0_(f) —=0l(f) = Sym"Y

The filtration
Sym"(X) = 0g(f) = 07 (f) = -+ = Oy (f) = Sym"(Y)

of Sym”(f) will be called Kinneth tower of Sym™(f).

Example 3.1.17. For any morphism f : X — Y in a model category, we have 02(f) =
a(f, f). If fis a cofibration, then

P2 o(f,f) =Y xY

is a cofibration, see [18].

Proposition 3.1.18. Let

X' Y’

f/

be a pushout in a symmetric monoidal category with finite colimits. It induces a diagram

Y/\n

Ky (f)

K51 (f)
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whose colimit is Y. Consequently, we have a cocartesian square

Oon
! Y

Dn 1(f)

On—1(f") o Y’

Proof. See [13]. O

We recall that the cofibre of a morphism X — Y in a category with terminal object
is denoted by Y/X, see Definition In the rest of this section, we shall assume

that all categories are pointed.

Corollary 3.1.19. Let € be a symmetric monoidal category with finite colimits. Let
f:X =Y be a morphism in € and put Z =Y/X. Then for any integer n > 1, we

have two natural isomorphisms
Y fon o (f) = 2™,
Sym"Y/0;,_;(f) ~ Sym"Z

Proof. In Proposition [3.1.18, we take f’ to be the morphism * — Z. The corollary
follows from the preceding proposition, after noticing that 0O _,(f") = *. O

Lemma 3.1.20. Let 1 < i <n be two integers. For every morphism f: X =Y in ¥,

we have a cocartesian square

Sym" ' X A (f) ——— Sym" ‘X A Sym'Y (3.13)

071 (f) 07 (f)

Proof. Let us fix n € N. For any 1 < i < n, the diagram X9 A K? (f) is a

subdiagram of K* ;(f). Then, we have a universal morphism
colim (X(”_i) A K;_l(f)> — colim K[* (f).

Notice that colim (X(" INKE(f) = (n=3) A colim K?_|(f), and by definition
0¢ ,(f) = colim K! ,(f), O (f) = othin_l(f). Thus, we get a morphism

X0 A 0; 1 (f) = 071 (),
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together with a commutative diagram

X/\(n—z') A Dﬁ—l(f) X/\(n—i) AYN

O (f) o7 (f)

This induces a commutative diagram of >,,-objects

corg” s (XN ADE L (f) ———corir o (XA A YA

071 (f) o7 (f)
In view of diagram ([3.12)), this square is cocartesian. Finally, taking colimit colimy, ,
we get the cocartesian square ((3.13]). O

Proposition 3.1.21. Let € be a symmetric monoidal category and let f : X — Y be
a morphism in € with cofibre Z =Y /X. Fizx a positive integer n and assume that the

colimit of KI'(f) exists for all 0 < i < n. We have the following assertions:
(a) If
XM =og(f) = ot(f) = - = Op(f)y =Y""

is the Kiinneth tower of f\", then for each index 1 < i < n, we have a 2,-

equivariant isomorphism
0P (f)/ 01 (f) = corg? s, (X7 A 2.
(0) If
Sym"(X) = 0g(f) = 07(f) = -+ = 0,(f) = Sym"(Y)

is the Kiinneth tower of Sym"™(f), then for each index 1 < i < n, we have an
1somorphism
07 (f)/0F-1(f) = Sym" "X A Sym'Z .

Proof. By Corollary [3.1.19] we have
YN /aE (f) ~ 27
Hence, we obtain a cocartesian square

X Nn—i) A Dg_l(f) X Nn—i) A YN

% X Nn—i) INVAY

132



which induces a cocartesian square

Corgz_ixzi (XM= Al (f) —— Corgz_ixzi (XA A YA

* cor%:_ixzi (XA("_i) A ZM)

Then, we wet a commutative diagram

cor%:_ixzi (XA(”_i) AOL(f) ——— corgz_ixzi (X/\("_i) AY M)

* corgziixzi (XA(”_i) A ZN)
This allows to deduce an isomorphism

O N)/O () = oy, (XN A 2N

This proves item (a). On the other hand, by Lemma [3.1.20, we have a cocartesian
square
Sym" ' X A (f) ——— Sym" X A Sym'Y

071 (f) 07 (f)

Then, one has
SEA/EL ) = (S X AS'Y) [ (symnmix p gt (1)
~ Sym™ X A (Sym"Y/ﬁffl( f)) .
Thus, we get an isomorphism
07 (f)/OF1(f) =~ Sym" "X A Sym'Z .

This proves item (b). O

133



3.1.3 Symmetrizable cofibrations
Let € be a (pointed) closed symmetric monoidal model category.

Definition 3.1.22. A morphism f : X — Y in % is called symmetrizable (trivial)
cofibration if the corresponding morphism

fA" e n () = Sym"Y
is a (trivial) cofibration for all integers n > 1.

Notice that the morphism fo! : 05(f) = Sym!'Y is f : X — Y itself. Hence, every

symmetrizable (trivial) cofibration is a (trivial) cofibration.

Definition 3.1.23. A morphism f : X — Y in % is called strongly symmetrizable

(trivial) cofibration if the corresponding morphism

Jo O () - Y

n—1
is a (trivial) cofibration for all integers n > 1.

Theorem 3.1.24. Let € be a category as before. The class of (strongly) symmetrizable
(trivial) cofibrations in € is closed under pushouts, retracts and transfinite composi-

tions.
Proof. See [13]. O

Corollary 3.1.25. Suppose that € is also a cofibrantly generated model category with a
set of generating cofibrations I, and suppose that every morphism in I is symmetrizable.
Then, for any integer n > 1 and any cofibrant object X in €, the symmetric power

Sym"(X) is also cofibrant.
Proof. See [13]. u

Theorem 3.1.26 (Gorchinskiy-Guletskii). Suppose that € is a closed symmetric monoidal
model category. Let
xhy sz

be a cofibre sequence in € with X and Y being cofibrant, and let
Sym™(X) = 0g(f) = O7(f) = -~ = Ox(f) = Sym™(Y)
be the Kiinneth tower of Sym™(f). We have the following assertions:

(a) If f is a symmetrizable cofibration, then for every index i < n the canonical

morphism OF _(f) — O (f) is a cofibration.

(b) If f is a symmetrizable trivial cofibration, then for every index i < n the canonical

morphism OF_,(f) — OF(f) is a trivial cofibration.
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Proof. We refer the reader to [13]. O

Corollary 3.1.27. Let f be a trivial cofibration between cofibrant objects which is also
symmetrizable as a cofibration in a category €, as before. Then f is a symmetrizable

trivial cofibration if and only if Sym™(f) is a trivial cofibration for all n € N.
Proof. See [13]. O

Theorem 3.1.28 (Gorchinskiy-Guletskii). Let € be a closed symmetric monoidal
model category and suppose that it is also cofibrantly generated. Assume that the set
of generating cofibrations and the set of generating trivial cofibrations are both sym-
metrizable. Then the symmetric powers Sym”™ : € — € take weak equivalences between
cofibrant objects to weak equivalences. Consequently, there exist the left derived sym-

metric powers LSym™ defined on Ho (€¢) for n € N.

Proof. Let us fix a natural number n. By the Ken Brown’s lemma (See Lemma,
it is enough to show that the functor Sym" : 4 — % takes trivial cofibrantion between
cofibrant objects to weak equivalences. Suppose that f : X — Y is a trivial cofibration
between cofibrant objects in 4. By virtue of Theorem one deduces that all
cofibrations and all trivial cofibrations are symmetrizable in 4. In particular f is
a symmetrizable trivial cofibration. Hence by Corollary Sym"(f) is a trivial
cofibration, in particular Sym"(f) is a weak equivalence as wanted. See [13] for more
details. O

3.2 Geometric symmetric powers in the unstable set-up

In the sequel, k£ will denote a field of arbitrary characteristic, € C .#ch/k will be
an admissible category and . will be the category of Nisnevich sheaves on %, as in
Section2.3l

We recall that the nth fold geometric symmetric power Symg (2") of a sheaf 2" in
& is the colimit of the functor Fy : (h | Z) — . which sends a morphism hy —
2 to the representable sheaf hgymnys, see Section Sometimes, we shall write
colim,, _, 9-hgymnx to mean the colimit of the functor Fy-. On the other hand, if 2
is a pointed sheaf, then the nth fold geometric symmetric power of 2 is a colimit of

the form colim hx, 2 hsymnx ., where the colimit is computed in ..

3.2.1 Kinneth rules

Here, we study the Kiinneth rules for geometric symmetric powers (see Corollary
3.2.17)).
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Let X be an object of A°P%. The nth fold symmetric power Sym"(X) is the
simplicial object on ¥ whose terms are Sym"(X);:=Sym"(X;) for all i € N. Thus,

Sym™ induces a endofunctor of A°P%.

Lemma 3.2.1. For each n € N, Symy is isomorphic to the left Kan extension of the

composite
Sym"™

A°PE Aopg AR Aop o

along A°Ph.

Proof. Notice that A°P% is a small category. Let 2" be a simplicial sheaf and fix a
natural number 7. Let us consider the functor Fz; such that Symg(%) = colim Fg;,
as defined in page Let us consider the functor

T (A®E | 2) = (%] 25),

given by (A®hy — 27) — (hy, — Zi). Let ¢ : hy — 25 be a morphism of sheaves.
The morphism ¢ induces a morphism ¢ : Ay[i] - 2. Notice that Ay[i] coincides
with A°Phygap, and Jg ; sends the morphism ¢ to a morphism Ay ga[), — Zi such

that we have a commutative diagram

Uy

hy hveal)

® Jar i (@)
Zi
where w; is the morphism induced by the canonical morphism

V—J[Vv=VeAl),.
Aldls

Then, the composites of the form

Far, (uq)

Fo, (o) (Fa; 0 Jo i)(p) ——— colim (Fg; 0 J o ;)

define a cocone with base Fg; and vertex colim (Fg; 0 Jg ;). By a simple computation,

one sees that this cocone is universal, so that we have a canonical isomorphism
colim (F'g; o Jg ;) ~ colim Fg; .

We observe that the colimit of Fy; o Jy- ; is nothing but the ith term of the simplicial

sheaf Lanpaop, (A°Ph o Sym™)(27). Thus, we get a canonical isomorphism
Lanpopp (A°Ph o Sym™)(27) ~ Symyg(Z),
for every object 2 in A°P.#. O
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We denote by h' the canonical functor from €y to .%.

Corollary 3.2.2. For each n € N, the nth fold geometric symmetric power Symy on

A°P.Z, is isomorphic to the left Kan extension of the composite

Sym™

AP, AP, AR Aob g,

along A°PhT.

Proof. 1t follows from the previous lemma in view that the canonical functor from

AP to A°P.Y is left adjoint. O

We provide Lemmas and Proposition [3.2.5]in order to prove the Kiinneth
rule for symmetric for schemes (Corollary , that is, for a natural number n and
for two schemes X and Y on an admissible category of schemes, the nth fold symmetric
power Sym"™(X II'Y) is isomorphic to the coproduct ]_[Hj:n(SymiX x Sym’Y). We
recall that for a category € and a finite group G, the category €© is the category of
functors G — %, where G is viewed as a category. A functor G — % is identified with a
G-object of . If H is a subgroup of G, then we the restriction functor resg L 6¢ - ¢
sends a functor G — % to the composite H < G — €. If € has finite coproducts and
quotients under finite groups, then resg has left adjoint. The left adjoint of resg is

called corestriction functor, we denoted it by corg.

Lemma 3.2.3. Let € be a category with finite coproducts and quotients under finite
groups. Let G be a finite group and let H be a subgroup of G. If X is an H-object of
%, then

cor%(X)/G ~ X/H .

Proof. Suppose X is an H-object of ¥. We recall that corg(X ) coincides with the

coproduct of |G|-copies of X, it is usually denoted by G x X in the literature. Observe

that the group G x H acts canonically on G x X. By definition, cor%(X ) is equal to

colim (G x X). One can also notice that colim ¢(G x X) = X. Then, we have,

cor$%(X)/G = colim g cor$y(X)
= colim ¢ colim (G x X)
= colim g colim (G x X) (change of colimits)
= colim g X .

By definition, X/H is equal to colim ; X, thus we obtain that cor$%(X)/G is isomorphic
to X/H. 0
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Lemma 3.2.4. Let € be a symmetric monoidal category with finite coproducts and
quotients under finite groups. Let n,i,j be three natural numbers such that i,j < n and
i+ j=mn, and let Xg, X1 be two objects of €. Then, the symmetric group X, acts on
the coproduct \/k1+---+kn=j Xy N+ AN Xy, by permuting the indices of the factors, and

one has an isomorphism
(Vk1+-..+kn:j D CNAREERA an) /En ~ Sym‘’X( A Sym’ X .

Proof. After reordering of factors in a suitable way, we can notice that the coproduct
\/k1+---+kn=j X, N -+ AN X, is isomorphic to the coproduct of ( ) -copies of the term
Xé\iAXlAj, in other words, it is isomorphic to corgi 3, (X% Z/\XlAJ) which is a ¥,,-object.

By Lemma |3.2.3] we have an isomorphism
A Aj
(Corzxz( X]>/2 AXlJ)/(EiXEj%

and the right-hand side is isomorphic to Sym’Xy A Sym’ X1, which implies the expected

isomorphism. 0

Proposition 3.2.5. Suppose € is a category as in Lemma[3.2.]] Let Xy, X1 be two

objects of €. For any integer n > 1, there is an isomorphism
Sym™(Xo vV X1) ~ \/ (Sym'XoASym/X;). (3.14)
i+j=n

Proof. Let us fix an integer n > 1. We have the following isomorphism,

(Xov X))\~ \/ V XA AXy, |
0<j<n \ki+-+kn=j

and for each index 0 < j < n, the symmetric group X, acts by permuting factors on

the coproduct
n
H \/ Xy N N X,
5=0 \ ke +-+hp=j

Hence, we deduce that (Xo Vv X1)" / y.,, is isomorphic to the coproduct

ﬁ ((vk1+~~+kn:j Xy Ao A Xy,) /Zn) '
=0

Finally, by Lemma we obtain that Sym" (X V X1) is isomorphic to the coproduct
Vo< jgn(Sym”_j Xo A Sym’ X1), thus we have the isomorphism (3.14]). O

Definition 3.2.6. Suppose that ¢ is an admissible category. Let X = Ay and Y = B4
be two objects of ;. We denote by X VY the object (X 1Y )4 and by X AY the
object (X x Y),. Notice that the category %, with the product A is a symmetric

monoidal category.
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Corollary 3.2.7. Let ¥ C .ch/k be an admissible category. Then, for every integer

n > 1 and for any two objects X,Y of €, we have an isomorphism
Sym"(X VY) ~ \/ (Sym*X A Sym’Y).
i+j=n

Proof. Tt follows from the previous proposition in view that % is symmetric monoidal

and has quotients by finite groups. O

Remark 3.2.8. Let f be a morphism of the form X — X VY in €. Then, for every

integer n > 1, we have a commutative diagram

Sym™ (f)

Sym" X Sym"(X VY)

Sym" X \/Hj:n(SymiX A Sym?Y")

where the right vertical arrow is the isomorphism given in Corollary [3.2.7 and the

bottom arrow is the canonical morphism.
In the following lemma we consider the notations used in Section 3.1

Lemma 3.2.9. Let € be an admissible category and let o : X — X VY be a coprojection
in €y. Then, for every positive integer n, the colimit of the diagram K'(p) exists, and
one has a filtration

XM =0g(p) = O ) = - = On(p) = (X VYY),

n

where O () is isomorphic to \/ XIANY™I for all indices 0 < i < n. Moreover,

n—i<j<n
this filtration induces a filtration

Sym"(X) = 0g(p) = O7(p) = -+ = Oplp) = Sym" (X VY),

n

where each O () is isomorphic to \/ (Sym’ X A Sym™7Y).

n—i<j<n

Proof. Since ¢ is a coprojection, Lemma [2.2.39] implies that the ith fold pushout-
product of ¢ exists for all indices i. Hence, by virtue of Proposition [3.1.14]the diagrams
K!(p) exist. Then, by Proposition [3.1.21] the morphisms ¢ and Sym"(y) have the
above filtration. Finally, by Corollary we deduce that the each morphism from

07 1(p) to OF(¢) is isomorphic to the canonical morphism

H (Sym? X x Sym"7Y) — H (Sym? X x Sym™" 7Y,

n—(i—-1)<j<n n—i<j<n

as required. O
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Example 3.2.10. If we take X to be the point * in the previous lemma, then the
morphism ¢ : * — Y =% VY induces a filtration

« =0g(¢) = OF (@) = -+ = On(p) =Sym™(Y),

where each 007 (i) is isomorphic to Sym*(Y). In consequence, the morphism % — A°Phi.

induces a Kunneth filtration of pointed simplicial sheaves
* = SymS(AOph;}) — Symé(AOph;}) — = SymZ(AOph;Z) .

Lemma 3.2.11. Let J be a category with finite coproducts and Cartesian products.
Then, for every integer n > 1, the diagonal functor diag: J — J*™ is final (see [20,
page 213]).

Proof. Let A = (Ay,...,A,) be an object of J*™. We shall prove that the comma
category A | diag, whose objects has the form A — diag(B) for B in J, is nonempty
and connected. We set B:=A; I1--- 11 A,. For every index 0 < ¢ < n, we have a
canonical morphism A; — B, then we get a morphism from A to diag(B). Thus,
the comma category A | diag is nonempty. Let B and B’ be two objects of J and
let A = (Aq,...,4,) be an object of J*"™. Suppose that we have two morphisms:
(p1,--.,on) from A to diag(B) and (¢],...,¢)) from A to diag(B’). For every index

0 <i < n, we have a commutative diagram

Ai

TN
©i / Vwi \X
B x B’
// N
B B’

where the dotted arrow exists by the universal property of product. Notice that we get

a morphism (11, ...,%,) from A to diag(B x B’) and a commutative diagram

A

e

diag(B) <— diag(B x B') —— diag(B’)
Thus, the comma category A | diag is connected. O

Lemma 3.2.12. Let 2 be a sheaf in . For every integer n > 1, we have an
isomorphism
X"~ colim py -hxn (3.15)
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Proof. Let (h | &) be a comma category and let us consider the functor Fy- , from
(h{ Z)*™ to A°?.¥ defined by

(hX1—>3&”,...,th—>%>|—>hX1><-~><th.

For every integer n > 1, let us consider the diagonal functor diag from (h | 27) to
(h } Z)*™. We recall that we have an isomorphism

2 ~colimy, 9 hx, (3.16)

where the colimit is taken from the comma category with objects hxy — £, for X € ¥

to the category of sheaves. Hence, we deduce an isomorphism
X"~ colim Fy .

Next, we shall prove that the canonical morphism colim (Fg ,, o diag) — colim Fg- ,, is
an isomorphism. Let us write % :=colim (Fly- ,, o diag) and let pu: Fg-,, o diag — Ay
be the universal cocone, where Ay denotes the constant functor with value %°. We
would like to find a universal cocone 7: Flg- ,, — Ag . The canonical morphisms hy, —

hx, II---Ihy,, for 1 <¢ <mn, induce a morphism
(th S X, hy, — 3{) —>diag<hX1H~-Hth = 5&") .
Hence, the composite

Fggm<hX1 - Z,...,hx, — 3&”) — (Fxnodiag)(hx1 II---Ihyx, — 3&”) — X,

(3.17)
where the object in the middle is equal to the nth fold product (hx, II---IThx, )*", and
the arrow on the right-hand side is the morphism induced by the universal cocone u.
Now, any morphism from (hx, = Z,...,hx, = Z) = (hx; = Z',... ,hx;, = Z') is
induced by a collection of morphisms X; — X/ for i = 1,...,n; and they provide the

following diagram

4

hX1><~~><th

(hx, 0I---hx, )"

&y

hxix"‘XhX;l (hX{H”'HhX;l)Xn

making the composite functorial. Thus, we obtain a cocone 7: Fg ,, — Ag. It
remains to prove that this cocone is universal. Indeed, let A\: Fig-,, — A4 be another
cocone. Then, the composite \ o diag: Fg,, o diag — A is also a cocone. By the
universal property of %/, there exists a morphism f: %" — 2 such that Ayou = Aodiag.

Hence, we get Ay o7 = A . This proves that 7 is a universal cocone. Notice that the
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composite functor Fyg- ,, o diag is given by (hx — 2°) — hxn. Finally, composing the

following isomorphisms
2" ~ colim Fy ,, >~ colim (Fy ,, o diag) = colim p,, s 2-hxn , (3.18)
we get the required isomorphism. O

Lemma 3.2.13. Let F', G be two objects in .. For any integer n > 1, there is an
isomorphism
Symg (F 11 G) =~ H (SymgF X SymgG).
itj=n
Proof. Let us fix an integer n > 1. By Corollary for any two objects X and Y of

€, we have an isomorphism

Sym*(X 1Y)~ J] (Sym’X x Sym’Y).
i+j=n
Since the Yoneda embedding h: ¥ — . preserves finite product and coproduct, we

get an isomorphism

Psmr(xy) = T (Psymi X sy ) - (3.19)
i+j=n
By definition, we have Symy (hx) = hgymn(x), Symy (hy) = hgymn(yy and Symg (hxmy)
is equal to hgymn(x11y)- Replacing all these in , we get an isomorphism
Symy (hx 1T hy) =~ H (Symé(hx) X Symg(hy)) . (3.20)
i+j=n
Let us consider the functor ®1: ¢'x%¢ — % which sends a pair (X, Y') to Symy (hxIThy)
and the functor ®3: ¢ x ¢ — . which sends a pair (X,Y) to [[;,;_,(Symghx x
SymJhy). Let
Lan®{,Lan®s: .¥ x ¥ — .

be the left Kan extension of ®; and ®5, respectively, along the embedding h x h from
€ x € into . x .. Since . is an extensive category, it follows that the coproduct
functor (¢ | F) x (¢ | F) — (¢ | F 11 G) is an equivalence of categories; hence, one
deduces that the functor Lan®; is nothing but the functor that sends a pair (F,G) to
Symy (F IL G). By [3, Prop. 3.4.17] . is a Cartesian closed, hence, one deduces that
Lan®; sends a pair (£, G) to [[, ;_, (SymgF x SymJG). Finally, from the isomorphism
, we have ®1 ~ @5, which implies that Lan® is isomorphic to Lan®s. This proves

the lemma. O

Corollary 3.2.14 (Kiinneth rule). Let 2", % be two objects in A°P.. For any integer

n > 1, there is an isomorphism

Symy(2 M)~ [] (Symi2 x Sym}#).

i+j=n
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Proof. Tt follows from Lemma [3.2.13 O

Remark 3.2.15. Let f: 2" — 2 V # be a coprojection in A°P.¥,. Using left Kan
extensions, we deduce from Remark that for every integer n > 1, we have a

commutative diagram

Sym™(f)

Sym!2 Sym (27 V )

Sym!' 2

\/Hj:n(Symz% A Symé@)

where the right vertical arrow is the isomorphism given in Corollary [3.2.14] and the

bottom arrow is the canonical morphism.

We recall that Agpec(r)[0] is the terminal object of A°P.%. From the definition, we
observe that the functor Symy preserves terminal object Agpec(r)[0], for n € N. Hence
the endofunctor Symyg of A°P.¥ extends to an endofunctor of A°P.%,, denoted by the

same symbol Symy if no confusion arises.

Lemma 3.2.16. Let F', G be two objects in ... For any integer n > 1, there is an
isomorphism
Symy (F'V G) =~ \/ (Sym;F A SymgG).
i+j=n

Proof. The proof is similar to proof of Lemma[3.2.13] In this case we define two functor
®; and P, from €} X €4 to . such that ®; takes a pair (X1,Y,) to Sym;‘(hx+ Vhy,)
and @ takes a pair (X4,Y,) to Vi+j:n(Sym§hX+ A Symghn). Hence we prove that
the left Kan extensions of ®; and ®5, along the canonical functor €, x ¢, — %, are

isomorphic. O

Corollary 3.2.17 (Pointed version of Kiinneth rule). Let Z°, % be two objects in

A°P.Z,. For any integer n > 1, there is an isomorphism

Symg (2 V) ~ \/ (Symé%/\Symé@).

i+j=n

Proof. 1t is a consequence of Lemma [3.2.16 O

Proposition 3.2.18. For each n € N, the functor Symg preserves termwise coprojec-

tions.

Proof. 1t follows from Lemma [3.2.13| for the unpointed case and from Lemma [3.2.16
for the pointed case. ]
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3.2.2 Kiunneth towers

Let f: 2" — % be a morphism of pointed simplicial sheaves. A filtration of Symy(f)
in A°P.7,,

Symg (27) = L' (f) = A"(f) = - = L3 () = Symg (%),

is called (geometric) Kiinneth tower of Symy(f), if for every index 1 <i < n, there is

an isomorphism

cone(.f[il(f) — Z"(f)) ~ Symg_i(%) A Sym;(%)
in A (Gnis, A1).

Later, we shall prove that the nth fold geometric symmetric power of an I;'mj-cell

complex has canonical Kiinneth towers, see Proposition [£.1.2] In the next paragraphs,

A°PhT will denote the canonical functor from A°P%,. to A°.,.

Definition 3.2.19. A pointed simplicial sheaf is called representable, if it is isomorphic

to a simplicial sheaf of the form AOph}, where X is a simplicial object on %.

Example 3.2.20. For any object U in ¢ and n € N, the simplicial sheaves Ay [n]4
and 0Ay[n]4+ are both representable.

Proposition 3.2.21. For every n € N, the nth fold geometric symmetric power of a
morphism of representable simplicial sheaves induced by a termwise coprojection has a

canonical Kunneth tower.

Proof. Let ¢: X — Y be a termwise coprojection in A°P%’; and denote by Z the cofibre
Y/X. By Lemma there is a filtration

XM =0p(p) = 01 (p) = - = Oplp) =Y.

Since % is admissible, A°P%’. allows quotients by finite groups. Then, the above filtra-

tion induces a filtration
Sym”(X) = T3 (p) = D7 (p) = - — O(p) = Sym™(Y), (3.21)
such that, for every index 1 < i < n, there is an isomorphism
a7%/a? ; ~ Sym™ (X) A Sym‘(Z)

Since h preserves finite coproducts and products, the filtration (3.21)) induces a filtration
of Symy (A°PhY),

opyp+ opp+ opz,+
AThgp(p) = APhdn) — - > A%y,
which is a Kiinneth tower of Symy (A°Phl). O
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Directed colimits of representable simplicial sheaves

We recall that a directed colimit is the colimit of a directed diagram, i.e. a functor
whose source is a directed set (see Definition [1.1.20]).

Definition 3.2.22. We shall denote by (A°P%,)? the full subcategory of A°P.7, gen-
erated by directed colimits of representable simplicial sheaves (Definition [3.2.19)).

Proposition 3.2.23. Let f: & — 2V & be a coprojection of simplicial sheaves,
where 2 and % are in (APE)*. Then, for every n € N, the Kiinneth tower of

Symy (f) is a sequence
L3 (f) — A(f) — - — L),
such that each term Z'(f) is isomorphic to the coproduct

\/  (Sym,2 ASym]~'®). (3.22)

(n—i)<i<n
Proof. Let us write 2 :=colim deDAOPh}d and % :=colim eeEAOPh;CG, where X4 and
Y, are in A°P%.. Then, the coproduct 2 V % is isomorphic to the colimit

colim (d@)erE(AOph}d v AOphiZ) ,

and f is the colimit of the coprojections AOph}d — AOph}d \% AOph;Ce over all pairs
(d,e) in D x E. Let us write ¢4, for the coprojection Xq — X4V Y.. By Lemma

the morphism Sym"(¢4) has a Kiinneth tower whose ith term has the form

Oi(Pd,e) =~ \/ (Syled A Sym"‘lYe) )
(n—i)<I<n

Hence, we have an isomorphism
APRT A (pge) ~ \/ <SymlgA°ph}d A SymgflAOph;J .
(n—9)<Il<n

Taking colimit over D x E, we get that

L (f) :=colim (d,e)EDxE‘AophE?(wd,e)

is isomorphic to the coproduct (3.22)), as required. O

Lemma 3.2.24. The subcategory (A°PE)# is closed under directed colimits.

Proof. Let 2 : I — (A°P%)* be a directed functor. We aim to prove that colim .2~
is an object of (A°P%¢,)#. Indeed, there exists a collection of directed sets {J; | i € I},
such that, each object 27(¢) is the colimit of a directed diagram 2Z;: J; — A7
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whose values are in the image of the functor A°Ph™. We set J:=U;cs J;, note that it is
also a directed set. Let L be the set consisting of pairs (j,7) € J x I such that j € J;.
The preorder on J x I, induces a preorder on L, so it is also an directed set. We define
a diagram #: L — A°P.7, that assigns an index (j,7) € L to the object Z;(j). We

have
colim 2" = colim je; Z7(i) =~ colim jercolim je s, Zi(j) ~ colim (; e, Zi(j) = colim &' .
Therefore, colim 2 is a directed colimit of representable simplicial sheaves. ]

Lemma 3.2.25. A morphism between representable simplicial sheaves has the form

AOphj,j, where ¢ is a morphism in A°PE, .

Proof. Suppose that 2" = AOph} and % = AOph;S, where X and Y are two objects
of A°P%,. For every n € N, the morphism f,: 2, — %, is a morphism of the

form h}" — h;in, and by Yoneda’s lemma this morphism is canonically isomorphic

+
Pn?

6: [m] — [n] be a morphism in A. We have a commutative square

to morphism of the form hJ , where ¢,: X,, — Y, is a morphism in ;. Now, let

ni

+ n +
hy. hy

0%

+ +

- s

th th hYm
PYm

where the vertical morphisms are the morphisms induced by 6. By Yoneda’s lemma,
the morphism 6% is canonically isomorphic to a morphism of the form hgs , where
0% : X,, = X, is a morphism in €. By the same reason, 8}, is canonically isomorphic
to a morphism of the form hg;, where 65.: Y, — Y, is a morphism in ¥. Moreover,

we have a commutative diagram

©
Xn i Y.

0% 0y
Xy ———= Yo

This shows that the morphisms ¢, for n € N, define a morphism ¢: X — Y in AP,

such that f is canonically isomorphic to AOph;f. O
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Lemma 3.2.26. Let

o — ¥ (3.23)
f r
B R—

g

be a cocartesian in A°P.%, where f is the image of a termwise coprojection in A°PE,
through the functor A°°h*. One has the following assertions:

(a) If Z is a representable simplicial sheaf, then % is so, and f’ is the image of a

termwise coprojection in A°PE€y through the functor A°Ph™.

(b) Suppose that o and % are compact objects. If X is in (APE, )7, then so is ¥ .
Moreover, if " is a directed colimit of representable simplicial sheaves which are

compact, then so is % .

Proof. (a). By hypothesis, there are a termwise coprojection ¢: A — B and a mor-
phism 9: A — X in A%, such that f = Ahl and g = AOPh;Z. Since ¢ is a

termwise coprojection, we have a cocartesian square

A—Y o x
© 74
B Y
1721/

in A°P%,, where ¢’ is a termwise coprojection. As h preserves finite coproducts, we
deduce that ¢ is isomorphic to AOphit and [/ = AOphZ,.

(b). Suppose that 2 is the colimit of a directed diagram {2Z;}qep, where 2 is
a representable simplicial sheaf. Since &/ is compact, there exists an element e € D
such that the morphism ¢ factors through an object Z.. For every ordinal d € D with

e < d, we consider the following cocartesian square

o Za
!
B BN g Xy

By item (a), the simplicial sheaf & 11, %2y is representable. Therefore, we get a
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cocartesian square

4 colim deD %d
!
B colim egd(% > %d)
deD
as required. O

Lemma 3.2.27. Every I;;Oj-cell complex of A°P., is the colimit of a directed diagram
of the form {Zytaep such that, for d < d' in D, the corresponding morphism from
Zq to Xy is a termuwise coprojection of compact representable simplicial sheaves. In

particular, every IT _.-cell complex of A°P.7, is in (A°PE, ).

proj
Proof. Notice that the domain and codomain of the elements of I;;Oj

an element of I;roj—cell is a transfinite composition of pushouts of element of I;rroj, the

lemma follows by transfinite induction in view of Lemma [3.2.26] (b). O

are compact. Since

Infinite geometric symmetric powers

Let 2" be a pointed simplicial sheaf in (A°P%,)#. Then, in view of Example [3.2.10

we deduce a sequence,
*—)Sym;(%‘) —)Symg(%) e — Sym}(Z) — -+ .
We define
Symg(Z") :=colim penSymy () .
Proposition 3.2.28. We have an isomorphism
Symg* (2" V #) ~ Sym°(Z") A Symg*(¥) .
Proof. Since N is filtered, the product Symg®(2") A Symg®(#') can be computed as the
colimit
colimieN,jeNSymz(%) A Symg(%) .
By Corollary [3.2.17, for every n € N, the geometric symmetric power Symy (2" V %)
is isomorphic to the coproduct \/, +j:n(SymgﬁK A SyméZ’/ ). Hence, the composites
Symg(%) A Symg(c%”) — \/ (Symé% A Symg@) — Symj (2 V¥),
i+j=n
for (i,7) € N?, induce a morphism a: Sym{°(.2") A Sym{*(%) — Sym (2 vV %). On
the other hand, for a pair of indices p,q > n, we have a canonical morphism from the
coproduct \/, +j:n(Sym;,%” A Symé@ ) to Symy 2" A Symi%'. Hence, the composite

Symg (2 V#) = \/ (Sym;% A Symé@) — Symf(27) A Symi(2)

i+j=n
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induce a morphism 3: Symg°(2 V%) — Sym°(2"). From the constructions of o and

B, one observes that they are mutually inverses. ]

3.2.3 Geometric symmetric powers of radditive functors

Let k be a field and let € C .#ch/k be an admissible category (Definition [2.3.1). As in
Definition [2.3.31] for any integer n > 1, the left Kan extension induces a functor

SymJ,q .: Rad(%¢) — Rad(¥)

rad,g *

such that there is a diagram

@ Sy % (3.24)
h h
Rad(¥) Sy Rad(¥)
rad,g

where h is the functor is the Yoneda embedding. That is, the left Kan extension
Lany(hoSym™): Rad(%) — Rad(%) of hoSym™ along h along, as shown in the following

diagram
hoSym™

€ Rad(%¥)
h anp, (hoSym™)
Rad(¥)
More explicitly, for a radditive functor 2", Symy,4 g(% ) is defined as follows. If h | 2~

is the comma category with objects hyy — 2 for U € €, and if Fy-: h | & — Rad(%)
is the functor defined by
(hU — %) — hsyan,

then, we have

Symy,q 4(2°) = colim Fy- .

Definition 3.2.29. The above left Kan extension induces a functor

Sym”, . : A®Rad(%) — A°Rad(%)

rad,g *
and we called the nth geometric symmetric power of radditive functors.
Let anjs be the left adjoint of the forgetful functor A°P.¥ — A°PRad(¥). For a
radditive functor we write 2 2Nis instead of anis(Z").
The following proposition shows the connection between geometric symmetric pow-

ers of simplicial Nisnevich sheaves and geometric symmetric powers of simplicial rad-
ditive functors defined in [40].
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Proposition 3.2.30. For every simplicial radditive functor 2, we have an isomor-
phism

(Symfh o(2)™ = Sym(275).

rad,g

Proof. 1t is enough to prove for radditive functors and Nisnevich sheaves, but it follows
since geometric symmetric powers are expressed in terms of colimits and they commute

with a left adjoint functor. O

Lemma 3.2.31. Let 27, % be two objects in Rad(¥€). For any integer n > 1, there is
an isomorphism

rad . .
Symg(2 I &)~ [] (Sym)2 x Sym/#).

1+j=n
Proof. The proof is similar to the proof of Lemma O

Corollary 3.2.32. Let 2", % be two objects in Rad(% ). For any integer n > 1, there
s an isomorphism
Symi(2' V)~ \/ (Sym} 2 ASym)#).
i+j=n

Proof. Tt follows from the previous lemma, see also [40, Lemma 2.15]. O

3.3 Geometric symmetric powers of motivic spectra

In this section, we define a stable version of the unstable geometric symmetric powers of
motivic spaces defined in Section We show that the stable geometric symmetric
powers extend naturally the unstable ones, see Proposition and Corollary [3.3.10

3.3.1 Constructions

Let € C Ych/k be an admissible category as in the previous sections. The category
A°PE, is symmetric monoidal. For two simplicial objects X and Y, the product X AY
is the simplicial object such that each term (X AY'),, is given by the product X, AY,,, see
Definition [3.2.6] If X = (Xo, X1, X2,...) and Y = (Yp,Y3,Ys,...) are two symmetric
sequences on A°P%’ | then we have a product X ® Y which given by the formula
(X@Y)h=\ cosly (XinY)).
i+j=n

For every symmetric sequence X = (Xo, X1, Xo,...) on the category A°P%, and for
every n € N, there exists the quotient X®™ /3, in the category of symmetric sequences
on A°P%,. For every p € N, we have

b
(X®n)p = \/ COTEZ XX S (Xiy A AN X))
i1+ +in=p
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and the symmetric group ¥, acts on (X®"), by permutation of factors. As ¢ allows
quotients under finite groups, the quotient (X®"), /%, is an object of ¢ for all p € N.
Notice that the Oth slice of X®"/%,, is nothing but the usual nth symmetric power
Sym"(Xo) = X{"/Z, in €4

Let us fix an object S of A°P%’.. A symmetric S-spectrum on A°P%, is a sequence
of ¥,-objects X, in A°P¥ together with X,-equivariant morphisms X, A S — X, 41
for n € N, such that the composite

X ASM = Xt ASND s X
is 2,4 n-equivariant for couples (m,n) € N2

Terminology. We denote by Sptg(A°P%,) the category of symmetric S-spectra on
the category A°P%, .

We have a functor Fy from A°P%, to Sptg(A°P%E,) that takes an object X of
A°PZ, to the symmetric S-spectrum of the form (X, X A S, X A S"2 ...). We have a

commutative diagram up to isomorphisms

@, @,
Const Const
APE, Sy APE,

Fo Fo
Sptg(A°PE, ) - Sptg(A“PE, )

Let T be the pointed simplicial sheaf (P!, 00) and let 7" be the pointed simplicial sheaf
}P’}F in A°.7,. We recall that Spt,(k) denotes the category of symmetric T-spectra and
Spty/ (k) denotes the category of symmetric T'-spectra on the category A°.%,. The

canonical functor A°Pht: A°P¥, — A°.¥, induces a functor
H' Sptpr (A*PEy) = Spty (k)
that takes a symmetric P}F—spectrum (X0, X1,...) to the symmetric T"-spectrum
(APhY , APhE ...

Since ¥ is a small category, the category A°P%¥, is also small. Hence, the category
SptPL(AOPCér) is so.

Let f: T" — T be the canonical morphism of simplicial sheaves. This morphism
induces a morphism of commutative monoids sym(7”) — sym(7'). In particular, sym(T")

can be seen as a symmetric T’-spectrum.
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For any two symmetric 7"-spectra 2~ and %/, we write 2 Agym(rvy % for the co-

equalizer of the diagram

2 Nsym(T')N¥ X NY

induced by the canonical morphisms 2" A sym(7") — 2 and sym(T') N ¥ — %.
For every symmetric 7"-spectrum 2”, the symmetric sequence 2~ Agym vy sym(T) is a

symmetric T-spectrum. We have a functor

(=) Asym(ry sym(T'): Spty (k) — Sptp(k).

Its right adjoint is the restriction functor resy/7+ that sends a symmetric T-spectrum

Z to 42 itself thought as a symmetric T'-spectrum via the morphism f: 7" — T'. Let
be the composition of H' with the functor (=) Agym(z7) sym(T'). We have a diagram

AP, —=—ee— AP,
Evp, Fy Ev, Fy

Let U be an object in Spt]Pﬂ+ (A°P%€,) and let n be a positive integer. The canonical
morphisms U ® sym(P}) — U and sym(P}) ® U — U induce a diagram of the form

UosymPL)@U® - @sym(PL)@U - ren

On the product of left-hand side, U appears n times. The symmetric group acts on

this product by permuting of factors of U. Hence, we obtain a diagram
H((U DsymPL)@U® - @ sym(PL) @ U)/S,) - (U™ /5,) . (3.25)

This diagram can be seen as a functor from the category {0, 1}, with two objects and
n non trivial arrows 0 — 1, to the category Spty(k). For instance, when n = 2, one
can think of this diagram as a coequalizer diagram.

Stable geometric symmetric powers

For a spectrum 2", we denote by (H | Z°) the comma category whose objects are
arrows of the form H(U) — 2 for all U in Sptﬂpir (A°PE, ). Let

Fo: (H | 2Z) — Spty(k)

be the functor which sends a morphism H(U) — 2 to the symmetric T-spectrum
colimit of the diagram ((3.25)).
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Definition 3.3.1. We define Symy (2") to be the colimit of the functor Fy. The

functor Symy  is called the nth-fold (stable) geometric symmetric power of symmetric

T-spectra.

Our constructions above are summarized in the following diagram:

Sym™
%, Y %,
Const Const
Symg,
A°PE, i A°PE,
A°CPh+ AOCPh+
o (3.26)
P AP, : AP,
Symg
xF
Sptﬂ"i (AOPCK_’_) Sptpi (AOp(g+) XF
\ X
H Symy o
Sptr (k) - Sptr (k)

Next, we shall study the essential properties of geometric symmetric powers.

Lemma 3.3.2. Let U be an object in Sptpi (A°PEL) and let n be a positive integer.
We have a canonical morphism 9, : SymypH(U) — Symg H(U).

Proof. The diagram (3.25)) yields into a commutative diagram

(HW) Asym(T) A HW) A= Asym(T) A HD)) [y, = B)™/5,

H((U®sym(m) QU@ @sym(PL)@U)/8,) —__ (U®"/2,)

(3.27)
where the vertical morphisms are the canonical morphisms. By taking colimit on the

above diagram, we obtain a morphism from Sym7.H (U) to Symy H (U). O

We recall that A°PhT denotes the canonical functor from A°P%, to A°P.,.

Lemma 3.3.3. Let 2" = (20, 21,...) be a symmetric T-spectrum in Sptp(k). Then,
the functor Ev,,: (H | 27) — (A°Ph* | 2,,) is final.
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Proof. Suppose that it is given a morphism AOphlJ} — %, where U is an object
of A°P¥. By adjunction, this morphism corresponds to a morphism of T-spectra
F,(A°hf) — 2. Since F,, o A°°h™ = H o F,, we have a morphism H(F,(U)) — 2 .
The unit morphism A°Phf; — (Ev,, o F,,)(A°Phf;) gives a commutative diagram

AR (Evy, 0 F,)(APh)

NP

where (Ev,, 0 F,,)(A%hf;) = APhT

corgy )’

H(X) - Z and H(X') —» 2 where X and X’ are in SptPL(AOP%Q. We have a

commutative diagram

Now, suppose that there are two morphisms

2

v

H(X)V H(X')
H(X) H(X')

where the dotted arrow exists by the universal property of coproduct. As H(X V X')

is isomorphic to H(X) VvV H(X"), the above diagram induces a commutative diagram

Zn

LN

AR A%RY,
This proves that the required functor is final [26], page 213]. ]

Proposition 3.3.4. Let n be a natural number. For every symmetric T-spectrum Z

in Sptp(k), we have a canonical isomorphism

Evo o Symy (") ~ Symy o Evo(Z') .
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Proof. Let U be an object in SptM(AOp‘ér). Since Evo(sym(PL)) = Spec(k). Applying
functor Evg to the diagram (3.25)), we obtain diagram consisting of identity morphisms
of AOpthM/En — AOphgoAn/En. Hence, the colimit of this diagram is AOpthAn/Zn itself.
Thus, we have

Evo o Symy 7(27) = colim ) 2 A s, -

By Lemma the right-hand side is isomorphic to

- +
colim AOPhZO%E'vo(Qf)AophUOA”/En ;
and by Corollary the latter is isomorphic to Symy o Evo(2"). O

Corollary 3.3.5. For every simplicial sheaf Z in A°P.%,, there is a canonical iso-
morphism
Evo(Symy 7(37727)) ~ Symg (Z) .

Proof. 1t follows from the precedent proposition in view that Evo(X3.2") is equal to
Z. O

We denote by Sym7 the categoric symmetric power in Sptp(k), that is, for a sym-
metric T-spectrum 2, Sym/:(2") is the quotient of the nth fold product 2" by the

symmetric group X,.

Lemma 3.3.6. We have a commutative diagram

Sym"

A°P.S A°P.F,

X7 7

Sptp (k) —<——— Sptr(k)

Sym7,

Proof. Let 2" be a pointed simplicial sheaf in A°P.¥,. By [I8, Th. 6.3], the functor
XX AP, — Sptp(k) is a monoidal Quillen functor. Hence, for n € N, the suspension

¥¥(Z ") is isomorphic to the product 33°(27)"". Since £ commutes with colimits,

we have
SF (Sym" 2) = SF (2" /)
~ SF(Z"") /2
~ SF ()" /S
~ Symp(EF Z).
This proves the lemma. O
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Corollary 3.3.7. For every simplicial sheaf Z  in AP, we have an isomorphism
(Evp o Sym7 o XF)(Z27) ~ Sym"™(Z") .

Proof. 1t follows from the previous lemma in view that Evo(X3¥%) = % for a pointed
simplicial sheaf % . ]

For a symmetric T-spectrum 2", we shall write 9" (2") for 9%.

Corollary 3.3.8. Let 2 be a pointed simplicial sheaf in A°P.Z,. If the natural mor-
phism Ip(EF 27): Symyp(EF Z7) — Symy p(3F27) is a stable Al-weak equivalence,
then the natural morphism Sym™(2") — Symy(2") is an Al weak equivalence.

Proof. In virtue of Corollary and Proposition we have a commutative dia-

gram
Sym"™(Z") il

Symyg (Z) (3.28)

Evo(Sym7 (57 27))

Evo(97.(£5° 2)) Evo(Symg (57 27))

where the vertical morphisms are isomorphisms. Since ¥ (X5 .2) is a stable Al-weak
equivalence, the morphism Evo(9%(33°27)) is an Al-weak equivalence. Therefore, 97

is an A"-weak equivalence. ]

Proposition 3.3.9. Let X and object of A°P€. We have an isomorphism
Symg’TE%o(A"ph}) ~ ¥F Symg(AOPh}) .

Proof. We have that S5 (A°PhY) = H(Fy(X)), hence
SymZ,TE%"(Aoph}) = SymZ,TH(Fo(X)) .

By definition, Symy H (Fp(X)) is the coequalizer of the diagram (3.25) in which U =
Fy(X). One has,

H(FO(X)®” /zn) ~ H(FO(XA” /zn)) = SF(APhE o x) = EF Sym! (APhY).

Since sym(P! ) = Fy(Spec(k) ), the object on left-hand side of diagram (3.25)) is nothing
but H (Fy(X)®"/%,) and the arrows are the identities. Therefore, the colimit of this
diagram is H (Fy(X)®"/%,,) which is isomorphic to £ SymZ(AOph}). O

Corollary 3.3.10. For any simplicial sheaf 2~ in %%, one has an isomorphism

Symy (377 27) =~ X7 Symg (Z) .
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Proof. Tt is a consequence of the previous proposition in view of Corollary [3.2.2] and
Lemma [3.3.3] O

Let n € N. For a symmetric sequence 2" = (2o, 21, ...), we define Symy 1 (2") to
be the symmetric sequence (Symg(%), Symyg (21), .. ) , and call it the nth fold level

geometric symmetric powers of Z . From the definition, we have
Evi(Symjr(27)) = Symy (Evi(2)),
for ¢ € N.

Lemma 3.3.11. For any symmetric T'-spectrum 2 = (X0, 21,...), the nth level

geometric symmetric power of 2 is a symmetric T’ -spectrum.

Proof. Let us consider a symmetric T-spectrum 2 = (2o, 21, Z2,...). For a k-
scheme U in %, we define a morphism of k-schemes from U™ x P! to (U x P})" as the

composite

U x P! St o U x (P

(U x PHn

where Ap: is the diagonal morphism and the second arrow is the canonical isomorphism.
This morphism induces a morphism from Sym"(U) x P! to Sym™(U x P!). Let us fix a
natural number i. To construct a natural morphism Symy(2;) A Pl — Symy (Zit1),
it is enough to construct a morphism Symy(2;) x P! — Symy (Zi+1) considered as
unpointed sheaves. Any morphism hy — Z; induces a morphism hgrypt — 25 X hpi.
Composing with the preceding morphism, we obtain a morphism hyypr — Zit1.
Hence, in view of the above morphism Sym"(U) x P! to Sym™(U x P!), we deduce a
morphism from colim p;,—; 2; hsymn (1) xp1 to colim py,— 25, Agymn (1) This gives a mor-
phism from Symyg (27) x P! to Symy (Zi+1). Since this morphism was constructed in a

natural way for all index 4, we get structural morphisms for SymZT(,%” ). O

Proposition 3.3.12. For each n € N, the functor Symy . preserves levelwise Al-
weak equivalences between symmetric T’ -spectra whose slices are termwise coproduct of

representable sheaves, i.e. objects in A°PE), .

Proof. Let f be a morphism of symmetric T’-spectra. From the definition we have
an equality Ev;(Symy 1 (f)) = Symg(Ev;(f)) for every i € N. Hence the proposition
follows from Theorem 2.3.38 O

. . Sym™ XFE
Remark 3.3.13. The left Kan extension of the composite €} — €y — Spt(k)
along the functor X% is not a good candidate for a (geometric) symmetric power, as

this Kan extension is not isomorphic to the identity functor of Spty(k) when n = 1.
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Remark 3.3.14. For a symmetric T-spectrum, the canonical morphism 9" from the
categoric symmetric power Symy.(Z2”) to geometric symmetric power Symg (2") is not
always a stable Al-weak equivalence. For instance when .2 is represented by the affine
space A?, Corollary implies that the canonical morphism from Sym%(E%oAi) to

SymZ’T(Z%OA%_) is not a stable Al-weak equivalence.

3.3.2 Kinneth towers

Let f: 27 — % be a morphism of symmetric spectra in Sptp(k). A filtration of
Symy 1(f) of the form

Symyr(27) = Z5'(f) = ' (f) = -+ = L' (f) = Symg (¥)

is called (geometric) Kiinneth tower of Symy r(f), if for each index 1 <4 < n, there is

an isomorphism
cone( L1, (f) = L1 (f)) = Symi7 () A Symi o(2).
in SHr(k).

Definition 3.3.15. A symmetric T-spectrum is called representable, if it is isomorphic
to a T-spectrum of the form H(U), where U is an object on Sptpt (A°PEy). A sym-
metric T"-spectrum is called representable, if it is isomorphic to a T”-spectrum of the
form H'(U), where U is an object on Spt]p}r (A°PE).

Definition 3.3.16. Denote by Sptp}r (A°P%)# the full subcategory of Spty (k) gen-

erated by directed colimits of representable spectra.

Definition 3.3.17. Let & be a symmetric monoidal model category and let S be an
object of Z. Let K: 2 — ¥ be a functor, where 2 is the category with two objects
and one nontrivial morphism. Let ¢g: 2™ — €?"~! the functor that sends an n-tuple
(X1,...,Xy) to a (2n — 1)-tuple (X1,S5,X9,S,...,X,-1,5,X,,). For any morphism
f: X =Y in ¢ and any integer n > 1, let Kg(f) be the composite

2" s gt Mg

For each index 0 < 7 < n, we denote by K¢ ,(f) the restriction of Kg(f) to 27, see m
We denote

O, (f):=colim Kg,(f),

if this colimit exists. Since the symmetric group ¥, acts on 27, one deduces that 3,

acts on Og;(f). We denote
0%:(f):=0%:(f)/%n,

if this quotient exists.
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Lemma 3.3.18. Let 2 be a symmetric monoidal model category, let S be a monoid
and let f: X —'Y be a morphism of S-modules. Suppose that for 0 < i <n, the objects

Os,i(f) and O;(f) exist. Then, there are n canonical morphisms

for 0 < i < n, induced by the actions of S-modules. Moreover, if P allows quotients by

finite groups, then they induce n canonical morphisms

Proof. These morphisms are constructed from the actions of S-modules. O

Definition 3.3.19. A morphism ¢ of P}r—spectra is called level-termwise coprojection
if for every n € N, its nth slice ¢, is a termwise coprojection in A°P%,. Similarly,
a morphism f of T-spectra (or T'-spectra) is called level-termwise coprojection if for

every n € N, its nth slice f,, is a termwise coprojection in A°P.%,.

Proposition 3.3.20. For every n € N, the nth fold geometric symmetric symmetric
power of a morphism of representable T'-spectra (resp. T-spectra), induced by a level-

termwise coprojection in Spt]p}r (A°PE,), has a canonical Kinneth tower.

Proof. Let ¢: U — V be a level-termwise coprojection in Sptpi (A°P% ). Let us write
+
1 ; () instead of K:ym(IP’l ) (). Since p: U — V is a level-termwise coprojection the
K + k)
colimit O, ; () of Kglﬂ.(go) exist in (A°P%,)* for every 0 < i < n. Moreover, since %
is admissible, the objects Of, () exists in (A°P%})>. For similar reason, the objects
07 () also exist. By Lemma 3.3.18) we have n canonical morphisms

(2

Notice that
07 () /B 1 () = U /5, @ (V/U)® /S,

and OF, ,(v)/0p1 ;_,(¢) is isomorphic to the product of

(U @sym(PL)@U ® - @ sym(PL) @ U) /Zn—i
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with (U/V®Sym(1[”_lk)®U/V®"'®Sym(P-1+)®U/V> /gi for every 0 < i < n. Hence,

we get a diagram

H'(Op1 4(#)) — H'(Op1 , () H'(Op1 1 (0)) —— H'(TOp1 ,(#))

H'(O5(#)) H'(O7(p)) On-1(p)

Taking colimit, the above diagram induces a sequence
Ly =L ==

By definition of geometric symmetric powers, we deduce that 3" = Symy 1 (H'(U))
and Z' = Symy 7 (H'(V)). Moreover, from the above one has

L)Ly 2 Syl (H (V) A Symiy o (H' (V) /H'(U)).

Thus, the above sequence is a Kiinneth tower of the morphism Symyp 7 (H'(¢)). O

3.4 Special symmetric powers

Let k be a field, and suppose that A and B are two k-algebras. We shall denote by
Homy (A, B) the set of morphisms of k-algebras, that is, the set of ring homomorphisms

f: A — B such that there is a commutative diagram

f

A

k

Notice that for any k-algebra B, the set Homy(k, B) consists of one single element, in
other words, k is the initial object in the category of k-algebras. In this section, h will
be understood as the Yoneda embedding of .#ch/k into Pre(#ch/k). Sometimes, we
shall write Homy (—, —) instead of Hom g,/ (—, —). If X is a k-scheme, then Symy (hx)

is the representable functor hgymnx for n € N.

3.4.1 Symmetric powers of a point: Galois extensions

Let L/k be a finite Galois field extension and set X = Spec(L). Let K be an alge-
braically closed field containing L and let U = Spec(K). In the following paragraphs,

we shall prove that for any n € N, the canonical morphism of sets
V% (U): (Sym"hx)(U) — (SymZhX)(U).

is an isomorphism (see Proposition [3.4.4)).
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Lemma 3.4.1. Let L/k be a finite Galois extension of degree v > 1 and let n be an

integer n > 1. The k-algebra (L®*™)>» has dimension (T+Z_1) as k-vector space.

Proof. Since L is a Galois extension over k of degree r, the tensor product L®+" is
. . -1 .
isomorphic to L*"™" " as vector spaces over k. Let {v1,v2,...,v.} be a k-basis of L.
Then the family {vi, ® vi, ® ... ® Vi, }o<i, iy i <p 15 & k-basis of LZ". An element of
(L®k™)%n i a linear combination
E Qiy,..iin, * Vig @ ... QUj,
0<i1,...,in<r

such that

g @iy, sin Vig(r) ®...x® Vig(ny = E iy,...inVip @ ... QU

0<i1,...,in<r 0<iy,...in<r

for all o € 3. From the above equality, we deduce the following relations

ai17~'~7in = aia—(l)v"'via(n) ? (329)
for all o € ¥,, and for all indices i1, .. .,4,. We recall that a combination of {1,2,...,r}
choosing n elements is an unordered n-tuple {i1,...,i,} allowing repetition of the

elements i1, ...,4, in {1,2,...,7}. Let us denote by C(r,n) the set of all repetitions of

{1,2,...,r} choosing n elements, and fix I = {i1,...,i,} in C(r,n). Suppose I has p

different elements ji,...,jp, where 1 < p < n, such that each there are k; repetitions

of the element j; in I for 1 <[ < p. In particular, one has 22:1 k; = n. Let us denote

by P(I) = P(i1,...,i,) the set of permutations with repetitions of {iy,...,i,}. By
|

an elementary computation in combinatorics, P(I) has a cardinality equal to kl'nikpl

elements. Then we have
kil. -+ k!
Z UZ,1®®UZ%:TvaJ(“)®®UU(Z")
{illv"'vi'ln}ep(ilv"'vin) . €Ly

and, from (3.29), we deduce that a; i = aj,.q, for all {i},...,iy} € P(i, ... in).

Hence
Y thstn@o@u, =Y S a6
0<i1,..yin<r {i1,0msin }ECO(r,n) {) 1esil, YEP (i1 40nyin)

Observe that the set

Z Ui/1®...®vi41

{i15- iR YEP (i1, sin) {i1,yin YEC(r,n)

is formed by linearly independent vectors in the k-vector space L®*". Hence, it is a
basis of (L®¥")*n. Then the dimension of (L®+")* is determined by the cardinality
of C(r,n), thus (L®¥")*» has dimension |C(r,n)| = (T+"_1). O

n
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Example 3.4.2. In the previous lemma, if L/k is a cubic extension, i.e. 7 = 3 with a
k-basis {v1,v2,v3} and n = 2, then the k-algebra (L ® L)*? has dimension 6 as k-vector
space and its canonical basis consists of six vectors

V1 @ v,

V2 @ V2,

v3 ® 3,

V1 QU2 +v2Q01,

V1 QU3 +v3 Q1

Vg ® U3 + U3 QU .

Lemma 3.4.3. Let L/k be a finite Galois extension of degree r > 1 and set X =
Spec(L). Let K be an algebraically closed field containing L and let U = Spec(K).

r+n—1
n

Then, for any integer n > 1 the set hgymnx (U) is a finite set with ( ) elements.

Proof. Since (L®¥™)®n is a sub-algebra of L&™ ~ LX™ " the k-algebra (L®+")5n ig
isomorphic to a product H;:ll L;, where each L; is a field extension of £ contained in

L. By the previous lemma, we have that the sum Z;:l dimy, L; is equal to (T+Z_1).

Let K be an algebraically closed field containing L. One has,

Homy, ((L®™)*" | K) = Homy, H L, K

Since L;/k is a finite separable extension and K is algebraically closed, Homy(L;, K)
is a finite set with cardinality equal to dimy L; for all j = 1,... .7~ 1. Hence, the set
Homy, ((L®+™)*n, K) is finite and has a cardinality equal to Z;:ll dimy L; = ("771).
Let U = Spec(K). We have,
hsymnx(U) = HOIIlk(U7 Sym”X)
= Homgpec(x) (Spec(K), Spec((L®’“")E")>
= Homy, ((L®k")2n, K) :
+n—1

(")

Thus, we conclude that hgymn x (U) is a finite set with elements. O

Proposition 3.4.4. Let L/k be a finite Galois extension and set X = Spec(L). Let
K be an algebraically closed field containing L and let U = Spec(K). Then, for any

integer n > 0, the canonical morphism of sets
Ix (U): (Sym"hx )(U) — (Symghx)(U)
s an tsomorphism.
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Proof. 1t is trivial if n = 0, assume that n > 1. Suppose that L = k(a) where « is a
root of an irreducible polynomial P(t) of degree r > 1. Notice that (Sym"hx)(U) =
Homy (L, K)" /%, is a finite set with (TJFZ*l) elements. On the other hand, by Lemma
(Sym"hx)(U) is also a finite set with ("""') elements, then it is enough to
prove the injectivity of the canonical morphism of sets from Homyg (L, K)"/%, to
Homy, ((L#¥™)*r, K), defined by {f1,..., fa} = (/i © -+ @ fu)|(pexn)=.. Indeed, let
{fi,..., fu}and {f1,..., f,} be two unordered n-tuple in Homy (L, K)" /3, such that

(e @ fa)lrems. = (1@ @ fi)lponysn - (3.30)

Weput a1 = fi(a),...,an = fu(a)and o) = fi(@),...,al. = fl(a). Then {aq,...,a,}
and {o],...,al} are two unordered n-tuples formed by roots of P(t) non necessarily
distinct from each other. Notice that to prove that the set {f1,..., fn} is equal to
{f1,--., f}}, it will be enough to prove that the set {aq, ..., a,} isequal to {a],...,al },
as a homomorphism of k-algebras L — K is uniquely determined by a root of P(t).

Indeed, observe that the elements

Y l1e-ele o oleo---o1],

=1 ith position

Y |1e-ele o 0l®---®le o olg---al],
1<i<j<n ith position jth position

aRaR -,

lie in (L®™)¥n. In view of the equality (fi ® -+ ® fn)(a1 ® -+  ® an) = ay - - - - - a,, for
all elements a1, ...,a, in L, we deduce the following equalities,

n n

Zai :(f1®...®fn)(Zl@...@a@)...@l)’

i=1 i=1

n n

Z Q; - =(1® - fn) Z 1 Ra®-Qa®---01|,

1<i<j<n 1<i<j<n

Using (3.30)), these equalities allow us to deduce the following,
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=1 =1
n n
/
E (673 Oéj = E [0 a],
1<i<j<n 1<i<j<n
/ / /

Notice also that these elements are in k, because they are invariants under Gal(L/k).

Now, observe that «aq,...,a, are all the solutions of the polynomial
n
):=t" — (Zaz) 4 Z ai-og | AT (=) g
1<i<j<n
in k[t], whereas o, ..., o/, are all the solutions of the polynomial
n
):=t" — (Za>~t”_l+ Z ag.a; -tn_2+-~-+(—1)n-O/1~-~-~Oz;
1<i<j<n

which is also in k[t]. Since P(t) = P’'(t), we conclude that {a1,...,an} = {af,...,al},

as required. ]

3.4.2 Symmetric powers of a double point

Here, we shall study the square symmetric power of X = Spec(k[z]/(2?)). Our goal in
the next paragraphs is Proposition [3.4.6]

Notice that there is a natural isomorphism of k-algebras k[x]®yk[zx] ~ k[z,y] defined
by z® 1+~ x and 1 ® x — y. The universal property of tensor product provides an

isomorphism of k-algebras,

(Klz)/ (@) @x (klal/(c)) = Klz, )/ (0%, 7).
Let 7 be the transposition of 9. The symmetric group 9 acts on k[z] ®j k[z] by
T(r®1) =1®z and T(1®2z) = x ® 1. Then 7 acts on k[z,y] by setting 7(zx) =
y and 7(y) = x. Thus we have an isomorphism of k-algebras 7: k[z,y] — k[z,y].
Since 7 ((22,y%)) = (2?,y?), the permutation 7 induces an isomorphism of k-algebras
7: k[z,y]/(z%,y*) — k[z,y]/(2%,y?) such that the following diagram

Elx,y] . klz,y]

k[w,y]/(a:2,y2) - k[m,y]/(m2,y2)
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is commutative, where the vertical diagrams are the canonical homomorphisms. From
the above diagram, ¥y acts on k[z,y]/(z2,y?) by 7(Z) = ¥ and 7(y) = . On the other
hand, we know that there is an isomorphism of k-algebras k[z,y]™? ~ k[u,v], where

u=2x+y and v = xy.

Lemma 3.4.5. There is an isomorphism of k-algebras,

P
<(l;[;’yy2])> ~ klu, v]/(u2 — 20,02, uv) ,

such that we have a commutative diagram

klx,y]*? —————— k[u, v]

( Klz.y] )22 {u.v]

(z2,y?) (u?—2v,02 uv)

Proof. Indeed, every element of k[z,y]/(x2,y?) has the form
f@y)=a+b-T+c-y+d-T 7,

b
where a,b,c and d are elements of k. Now, if f(Z,y) € (%) 2 en we have
7(f(Z,y)) = f(Z,7y). Hence,

a+b-y+cz+d y-T=a+b-T+c-y+d-x-7y,

~

Yo
then b = c¢. Thus, any element of ({;[fyy; ) can uniquely be written as

where a,b and d are elements of k. Since u = x + y, v = xy, we have
(x27y2) N k[(lf,y]EQ = (UQ - 2'077)2,11/0) .

In fact, to prove this equality, one uses the following relations u? — 2v = z2 + y2,

Yo
v? = 2%y? and wv = 2%y + 2y?. Any element of ( (Z[Qxy%])> can uniquely be written as

f@y)=a+b-u+d- v,

but the right-hand side is an element of % Reciprocally, any element of
klu.v] j can uniquely be written as a +b-u + d -7 with a,b,d € k. This show that

(u?—2v,02% uv
the i hism Elz. 4% ~ klu. o] ind i nism (el V2 o k)
e isomorphism k[z,y]*? ~ k[u,v] induces an isomorphism ) > a0t

such that the above diagram is commutative. Therefore,

<k[$] % ""[9”])22 N < klz, ] >22 ko] — 20.0% ).

(%) 7 (2?) (z%,y?)
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Proposition 3.4.6. Let X = Spec(k[z]/(x?)) and let U = Spec(A), where A is a

k-algebra. Then the canonical morphism of sets
9% (U): (Sym*hx )(U) — (Symghx)(U)
is injective. Moreover, if A is a reduced algebra, then ﬁg((U) is bijective.

Proof. We have

hx = Homy (U, X) ~ Homy,(k[z]/(z?), A) ~ {a € A|a® = 0},
and

hSymZ(X) (U) HOHlk; U Sym ))
klu,v]
~ Homy, | Spec(A), Spec <(u2 =20, 0%, uv) ))

(
= Homy, ( - 21} v2 uv)’ A)

{( d)e A2 —2d=d=c d= 0}

Moreover, we have a commutative diagram

(Sym?*hx) (U) hgym2(x)(U)

{a € Ala? =0V /5,

: {(c,d) € A%|¢? —2d =d* =c-d =0}

where the vertical arrows are bijections and the morphism of sets
¢ {ae A =01/ — {(c,d) € A2 —2d=d® =c-d =0}

is defined by
{a,b} — (a+b,a-b)

By the Vieta’s formulae, two elements a and b in A are roots of the quadratic polynomial
—(a+b)-t+a-b=0

in A[t]. Then we deduce that & is injective. Now, if A is a reduced algebra, then & is a

map of sets with one element. Therefore, 9% (U) is bijective. O
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3.4.3 Symmetric powers of the affine line

I learnt the following proposition from V. Guletskii, though he attributes this result to

S. Gorchinskiy.

Proposition 3.4.7. Let K be a field extension over a ground field k, and put X =
Spec(Al) and U = Spec(K). Fiz an integer n > 2. Then the canonical morphism of

sets
Ux (U): (Sym”™hx)(U) = (Symghx)(U)

1s injective and has cofiber H;t(U, Xn).

Proof. 1f k[x1,z2,- - ,xy,] is the ring of polynomial with n-variables, then we have an

isomorphism of k-algebras k[x1,z, -, xp]>" ~ k[uy, us, - -+, uy|, where

n
uy = E Ty
=1
n
U9 = E .’L‘Z'-.%'j,

1<i<j<n

Hence, we have

Sym”(Al) = Spec(k[x1,xa,- - ,JYn]Z”) ~ Spec(k[u,ug, - -

Then,

We have a commutative diagram

(Sym"hx) (U) hsymn(x)(U)

K"/%, K"

where the vertical arrows are bijections and K"/¥, — K™ is the morphism of sets

L Up)) ~ A"

which sends an unordered n-tuple {aq,...,a,} to the ordered n-tuple

n

n
E Qg , E ai-aj,...,al---an
=1

1<i<j<n

For any element (cy,...,¢,) of K™, we denote the monic polynomial in Kt]

Py ()=t —cp " b " gy
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Observe that, by the Vieta’s formulae, any unordered n-tuple {ay,...,a,} of elements

of K is a set of solutions of the polynomial

n
O R B S B

1<i<j<n

We claim that K"/%,, — K™ is injective. In fact, if {a1,...,a,} and {b1,...,b,} are

two unordered n-tuples such that

Zaz, Z Q... a- sz, Z bi-bj,....by---by

1<i<j<n 1<i<j<n

Then, {a1,...,a,} and {b1,...,b,} are both the set of solutions of the equation
Pcl,...,cn (t) = O’

therefore, we have {ai,...,a,} = {b1,...,b,}, showing the injectivity of the above
morphism of sets. We define a morphism of sets 3,: K" — H}(U,%,) as follows.
If (c1,...,¢n) € K", we denote by E = E,, ., the splitting field of the polynomial
P, .. c.(t) € K[t]. Then Gal(E/K) C ¥,,. We define 3, (c1, ..., ¢,) to be the composite

Gal(K/K) — Gal(E/K) < %, .

Next, we shall prove that the following diagram of sets

K"/S, K"
Bn
pt HL(U, %)

is a pushout, in other words, we a bijection of sets
K" /(K" /%) ~ Hy(U, %)

induced by f3,. To see this bijection it is enough to prove that if fo: Gal(K/K) — 3,

is the trivial homomorphism we have

Byt (fo) = K" /%0 .

In fact, if (¢1,...,¢,) is in K™/%, if and only if the solutions of the polynomial
P, . c,(t) are all in K, if and only if the splitting field £ = E., ., of P .. (t)

is equal to K, if and only if the composite

Cn

Gal(K/K) — Gal(E/K) — %,

is the trivial homomorphism fy, that is, 8,(c1,...,cn) = fo. O
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3.4.4 Symmetric powers of the affine 2-dimensional space

Proposition 3.4.8. We have an isomorphism
Sym?(A?) ~ A? x 2
where 2 is the quadratic cone {uw — v? = 0} over a field k.

Proof. Let x1,y1, z2, y2 be the coordinates of A? with coefficients over a field k, that is,
A% = Spec(k[z1,y1, 2, 12]). We set x:=x1 — 29, y:=y1 — yo, 2’ :=x1 + 22, ¥ :=y1 + 1o.
We have

Sym?*(A?) ~ Spec (k[z1, y1, 2, y2]™2) |

and

klu, v, w]

A? x 2 ~ Spec(k[z,9/]) %1 Spec ( )) ~ Spec (k[:{:’,y’] Rk W) )

(uw — v? (uw — v2)

Let 7 the transposition of ¥5. Notice that 7(z) = —z, 7(y) = —y, 7(2') = 2/ and
7(y") = ¢/. The transposition 7 induces a morphism of k-algebras 7: k[z,y] — k[z,y].

Then, we have
ko' y x, g™ = (klz, )™ [,y

Hence, all we need is to show the following isomorphism

klx, y]2 ~ k[u, v, w]/(vw — v?).

We define a morphism of k-algebras ¢: k[u,v,w] — k[z,y]>? given by o(u) = 22,
¢(v) = zy and p(w) = y2. Notice that 7(2?) = (—z)? = 22

7(y*) = y?, then ¢ is well defined. We shall show now that ker(¢) = (uw — v?). Note

, similarly 7(zy) = zy and

that the inclusion (uw — v?) C ker(p) is immediate to see. To show that the other
inclusion, notice that set {x2, zy, y?} is algebraically dependent over k and if f(u,v,w)
is a polynomial in k[u,v,w] of minimal absolute degree such that f(z?, zy,y?) = 0,
then f(u,v,w) is equal to uw — v? up to a multiplication by an element in £*. This

shows the required inclusion. ]

Claim 3.4.9. Let X = A? the affine plane over a field k and let A be a k-algebra.

Then the canonical morphism of sets
5 (U): (Sym"hx)(U) = (Symghx)(U)
is not always surjective for n > 1.
Proof. Let us consider n = 2. We have
hx(U) = Homy(U, X) ~ Homy(k[z,y], A) ~ A%.
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In view of the previous proposition, we have
hgym2(x)(U) = Homy, (U, A% x 2)
~ Homy,(Spec(A), Spec(k[z, y, u, v, w]/(uw — v?))
= Homy (k[z,y, u, v, w]/(uw — v?), A)
~ A% x 2(A),

where 2(A) is the set of elements (a,b,c) € A3 such that ac = b>. The morphism of
sets A2/¥5 — A? x 2(A) sends a unordered pair {(z1,y1), (¥2,72)} to the 5-tuple

(1‘1 + 22,91 + Y2, (21 — 12)2, (21 — 22) - (Y1 — y2), (Y1 — y2)2) :

Notice that this application is well-defined. Now, take for example £k = Q and A = Q.
The morphism of sets ¢: A2/%y — A? x 2(A) is not surjective, for instance the element
(0,0,2,1,1/2) € A% x 2(A) does not lie in the image of 1) because 2 is not a square in
Q. O
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Chapter 4

Lambda-structures in motivic
categories

In algebraic geometry, the theory of A-structures on rings has allowed to develop system-
atically a formalism of the Riemann-Roch algebra on Grothendieck groups of algebraic
varieties, [10]. Let R be a commutative ring with unit 1. A A-structure on R is a

sequence
{AnI R — R}TLEN

of endomorphisms of R such that one has the following axioms:
(i) A%a) =1, Al(a) = a, for every a € R,
(it) A™(a+0b) =3, =, A(a) - A(b), for every a,b € R.

See loc.cit. Let us give an illustrate example. Let X be an algebraic variety and let
us denote by #x the category of locally free sheaves on X. The Grothendieck group
K(X) of X is the free Abelian group Z[¥x], generated by classes of isomorphisms of

objects in ¥x, modulo the following relations
(7] =[] - 9],
whenever one has an exact sequence
0=+&8—F =9 0. (4.1)
The tensor product ® on ¥y induces a multiplication on K (X) by setting
(€l ©[F]:=[¢ © 7],

for objects & and % in ¥x. The unit of K(X) is [0x], where Ox is the structural
sheaf of X. By definition, the exact sequence

08>8 F - F =0
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gives an equality [& & 7] = [&] + [#]. The nth fold symmetric power Sym”™ of sheaves
in ¥x induces an endomorphism Sym” of K(X). It turns out that the sequence

{SLmH: K(X) - K(X)}neN

is a A-structure on K(X). Indeed, we have Sym®& ~ @x and Sym'& ~ & for all
& in Yx. Suppose we have an exact sequence and fix an positive integer n.
For each index 0 < i < n, let us write L} for the image of the canonical morphism
Sym™ ‘& ® Sym’.# — Sym".%. Then the induced morphism Sym™& — Sym”.Z has a
filtration

Sym"& =L C LT C --- C L" =Sym".F ,

n

such that there is an isomorphism
LY/LY | ~ Sym™ '€ ® Sym'¥

for 1 <4 < n. The important point is that we have a filtration in the category ¥x, i.e.
a filtration before taking isomorphism classes. This suggests the possibility of study a
global or categoric theory of A-structures on categories with short sequences, or more
generally on categories with cofibre sequences studied in homotopical algebra. The
idea of A-structure on symmetric monoidal model categories was introduced in [13]. It
allows one to study systematically various sorts of symmetric powers in such model

categories and in their homotopy categories.

Lambda-structures

Let us give a precise definition of a A-structure.

Definition 4.0.10. Let % be a closed symmetric monoidal model category with unit
1. A A-structure on € is a sequence A* = (A% A', A2, ...) consisting of endofunctors

A" € — € for n € N, satisfying the following:
(i) A° =1, At =id,

(ii) (Kunneth towers). For any special cofibre sequence X Ly 45 Zin %, and any

n € N, there is a unique sequence of cofibrations between cofibrant objects
N(X)=Ly—L} —--—=L—---—Lr=A"(Y),
called Kiunneth tower, such that for any index 0 < ¢ < n, there is an isomorphism

LYJLY | ~ A" X)AANY(Z).
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(iii) (Functoriality). For any commutative diagram

X Y Z (4.2)

X' Y’ z'

in which the horizontal lines are special cofibre sequences, there is a commutative

diagram
A" (X) =Ly Lt Ly e .. L, L™ = A"(Y)
An(X/) = L/g L”f L’g - s lefl _ L/Z _ A"(Y’)
(4.3)
in €.

Example 4.0.11. Let € be a closed symmetric monoidal model category such that
cofibrations in ¢ are symmetrizable (see Definition [3.1.22)). Then Theorem [3.1.26
implies that the categoric symmetric powers Sym™: € — €, for n € N, define a A-

structure on %.

Similarly, we give the definition of A-structure on the homotopy category of a sym-

metric monoidal model category.

Definition 4.0.12. Let ¥ be a closed symmetric monoidal model category. A A-
structure on Ho (%) is a sequence A* = (A°, A1, A% ...) consisting of endofunctors A"

of Ho (%) for n € N, satisfying the following axioms:
(i) A =1, Al =id,

(ii) (Kinneth tower axziom). For any cofibre sequence X Jy & Zin Ho (¢), and

any n € N, there is a unique sequence
AN'(X)=Ly—- L} —--—L'—>---—L=A"Y).

called Kiinneth tower, such that for any index 0 < ¢ < n, the quotient L} /L} ;
in ¢ is weak equivalent to the product A"~/(X) A A*(Z).

(iii) (Functoriality aziom). For any morphism of cofibre sequences in Ho (¥¢’) of the
(4.2), there is a commutative diagram of the form (4.3)) in Ho (%), in which the

horizontal sequences are the respective Kiinneth towers.
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Example 4.0.13. Let Sym™ be the categoric nth fold symmetric power defined on
A%®. 7, for n € N. The left derived functors LSym”, for n € N, provide a A-structure
on (s, A') (see [13, Theorem 57] for the proof in the context Nisnevich sheaves
on the category of smooth schemes). Indeed, the morphism Ay:1[0] = Agpecr[0] is a
diagonalizable interval, meaning that A,1[0] has a structure of symmetric co-algebra
in the category A°.%. We claim that the class of cofibrations and the class of trivial
cofibrations in A°P.¥ are symmetrizable. Since cofibrations in A°P.¥ are section-wise
cofibrations of simplicial sets, it follows from Proposition 55 of [13] that cofibrations
are symmetrizable. Let f be a trivial cofibration in A°P.¥. As f is a cofibration, it is
a symmetrizable cofibration. For every point P of the site s, the induced morphism
fp is a weak equivalence of simplicial sets. By [13, Lemma 54], the nth fold symmetric
power Sym"(fp) is also a weak equivalence. Since the morphism Sym"(f)p coincide
with Sym"(fp), we deduce that the nth fold symmetric power Sym™(f) is a weak
equivalence too. Hence, by [I3, Corollary 54|, f is a symmetrizable trivial cofibration.
Finally, Theorem 38 and Theorem 22 of [I3] imply the existence of left derived functors
LSym™, for n € N, and they provide a A-structure on 7 (%is, Al).

Example 4.0.14. Let 2 be a simplicial symmetric monoidal Q-linear stable model
category [6]. The projector symmetric powers Symy, of Definition for all n € N,
induce a A-structure on Ho (2), see Proposition

Example 4.0.15. The endofunctors LSymy, for n € N, provides a A-structure on the
category (s, A), see Theorem

Morphisms of lambda-structures

Next, we define a morphism between two A-structures as a sequence of natural trans-

formations which are compatible with their Kiinneth towers.

Definition 4.0.16. Let % be a closed symmetric monoidal model category with unit
1 and let A* and A”* be two A-structures on €. A morphism of A-structures from A*
to A™* consists of a sequence ®* = (®°, 1, ®2,...) of natural transformations ®" from
A™ to A for n € N, such that for any cofibre sequence X — Y — Z in ¢ and any

n € N, there a commutative diagram

A'(X) =Lg Lt Ly L, L™ = A"(Y)
Am(X) = L/g L’? L’g ce e L/Z—l _ L/Z — A/n(y)
(4.4)
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Example 4.0.17. Let & be a closed symmetric monoidal model category. The nat-
ural transformations Symj; — Sym", for n € N, from the homotopy to the categoric

symmetric powers, define a morphism of A-structures on €, c.f. [12].

Definition 4.0.18. Let € be a closed symmetric monoidal model category with unit
1 and let A* and A™ be two A-structures on Ho (%). A morphism of A-structures from
A* to A™ consists of a sequence ®* = (®°, &', ®2,...) of natural transformations ®"
from A™ to A’ for n € N, such that for any cofibre sequence X — Y — Z in Ho (%)
and any n € N, there a commutative diagram of the form in Ho (¥).

Example 4.0.19. The natural transformations J": Sym"™ — Symy, for n € N, induce

a morphism of A-structures from the left derived categoric symmetric powers to the left
derived geometric powers on ., (%xis, A'), see Theorem [4.1.10

Example 4.0.20. Suppose that, for every n € N, the left derived functor of Symy
exists on SHr (k). Then, the natural transformations 9" : Sym7 — Symy p, for n € N,
induce a morphism of A-structures from the left derived categoric symmetric powers to
the left derived geometric powers on SHp(k), see Theorem

4.1 Unstable set-up

Our goal in this section is to prove the main result, Theorem [1.1.4] which asserts that
the left derived geometric symmetric powers LSymy, for n € N (see Corollary [2.3.40)),
induce a A-structure on the pointed motivic homotopy category 7 (%nis, A).

Proposition 4.1.1. Let € be an admissible category. FEvery cofibre sequence in the

homotopy category Hi(Gnis, A') is isomorphic to a cofibre sequence of the form

A — B — B,
where of — A is in I;;Oj -cell and <7 is an I;;Oj—cell complex. In particular, of — A is
a morphism in A°PE, .

Proof. Let 2 — % — Z be a cofibre sequence in J%,(%xis, A'), where f is a cofibra-
tion from 2 to % in A°P.7,, such that 2 = % /2. We write &/ :=QP™(2") and
consider the induced morphism &/ — % . By Corollary [2.3.20] and Remark [2.3.22] the

composition of & — 2" with f induces a commutative diagram

a(f)

o B
B(f)
v 7 4
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where B(f) is a sectionwise trivial fibration and «(f) is in I;)Lroj—cell. By [18, Prop.
6.2.5], the cofibre sequence &/ — A — Z/</ is isomorphic to the cofibre sequence
2 Yo & i (G, AY).

O

-cell, where 2 is an I

igs ) R
Proposition 4.1.2. Let f: & — % be a morphism in I proj”

proj
cell complex. Then, for each n € N, Symy(f) has a functorial Kiinneth tower.

Proof. By virtue of Lemma the morphism f can be expressed as the colimit of a
directed diagram { f}4ep of termwise coprojections of representable simplicial sheaves.
Let us write fy: AOph}d — AOph;td, where X and Y are simplicial objects on & for
every d € D, . Hence, by Proposition the nth fold geometric symmetric power
Symy (fa) has a Kiinneth tower

L5 (fo) —= A (fa) —= - —= L (fa) - (4.5)
For each index 0 < i < n, we define

LI f):=colim ge p L (fa) -

7

Thus, we get a sequence
25'(f) = 4(f) — - — (). (4.6)

Let us show that this gives a Kiinneth tower of Symy(f) that is functorial in f. Since

the sequence (4.5)) is a Kiinneth tower of Symg(f4), we have an isomorphism
L fa) [ LA f) = Symp = (APRY, ) A Symi (AR /APRE, )
Hence, taking the colimit on the indices d € D, we get an isomorphism

L)L (f) = Symy ™ (27) A Symy () 2). (4.7)

g

O

Lemma 4.1.3. The endofunctor LSym(g] of H.(Cnis, AV) is the constant functor with
value 1, where 1 is the object Agpec(r)[0]+ in J(GNis, A1), and the endofunctor LSymgl]
is the identity functor on H.(Gnis, A').

Proof. Since Sym®X = Spec(k), for every object X in %y, the endofunctor Sym? of
%, is constant with value Spec(k);. By the lef Kan extension, we deduce that Sym®
extends to an endofunctor Symg of AP.7, given by 2" +— Agpec(r)[0]+. Hence, we
deduce that LSymg is the endofunctor of % (%yis, A') given by 2 + 1. On the other
hand, for every object X in €, we have Sym' X = X. By the left Kan extension, we
deduce that the endofunctor Sym}] of A°P.7, is the identity functor, then LSymg is the
identity functor on % (%is, Al). O
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Now, we are ready to state and prove our main theorem in this section.

Theorem 4.1.4. The endofunctors LSymy, for n € N, provides a A-structure on
%(%NisaAl)'

Proof. By Lemma LSymg is the constant functor with value 1, and LSym; is
the identity functor on % (%nis, A'). Let 2~ — % — 2 be a cofibre sequence in
H(Gis, A1) induced by a cofibration f: 2 — % in the injective model structure of
A°P.Z,. By Proposition we can assume that f isin I;rroj—cell and 2 isan I" j-cell

pro

complex. Hence, by Proposition for each index n € N, Symy(f ) has a Kiinneth
tower,

Symg(2) = Z5'(f) = L"(f) = -+ = L3(f) =Symg (%), (4.8)
which induces a Kinneth tower,
LSymg(2°) = LLG(f) = LL(f) = -+ = LLI(f) = LSymy (%),

of LSymyg(f) in H.(Cnis, AY). Finally, the functoriality axiom follows from the func-
tionality of Kiinneth towers of the form (4.8)), see Proposition O

4.1.1 A morphism of lambda-structures

In this section, we show the existence of a morphism of A-structures from left derived

categoric symmetric powers to the left derived geometric symmetric powers, see Theo-

rem LT.T0

Let us consider the smash product A on A°P.%,. Let f: 2 — % be a morphism
in A°P.¥,. We recall from Section that one has a sequence of subdiagrams

Kg(f) c K7 (f) c--- C K (f)-
This induces a sequence of morphisms in A°P.%,
2 =0p(f) = ot (f) = - = on(f) =27,

and its composite is nothing but the n-fold smash product f \": Z* — "\ of f.

For every 0 < ¢ < n, we denote

Li(f) =i (f)/%n-

In particular, we have L{ = 2"/, = Sym"(%") and L = #"" /%, = Sym™(¥).

177



One has the following commutative diagram,
f/\n
//”M\\

P = OR(f) —— O () —= + ——= D, (f) —— O(f) = 2"

Sym" 2" = Lg(f) —= Li(f) —= - ——= Ly, (f) — Ly(f) = Sym"¥

n

Sym™ f

A functorial morphism

For every simplicial sheaf 2", we want to construct a natural morphism 9" from
Sym"(Z") to Symg (Z") . First of all, let us consider the case when 2" is a representable
simplicial sheaf hx for X in % . In this case, Symg(h x) is nothing but hgymnx. In view
of the isomorphism (hx)*"™ =~ hxn, the canonical morphism hx» — hgymn induces a
morphism (hx)*" /%, — hgymr, that is, a morphism Sym"(hx) — Symg(hx). We
denote this morphism by ¥} or simply by 9.

Proposition 4.1.5. For every simplicial sheaf 2", there is a functorial morphism
s Sym"™(27) — Symy (27).

Proof. It is enough to show for a sheaf 2. Indeed, in view of Lemma [3.2.12] we have

an isomorphism 2 %" ~ colimy,, 9 hx». Hence, one has
Sym™(2") = (27")/%n

~ (colimp, —2-hxn)/E,

~ colim p, 2 (hxn/%y)

= colimp, 2 Sym"(hx).
Taking colimit to the canonical morphisms 9’ : Sym"hx — Symghy, for X in ¢, we
get a morphism

colim p _, 90% : colim,, _, -Sym"hx — colim hX%gSymghX .

On the one hand, we have seen above that colimy,_,2-Sym"hx is isomorphic to
Sym" (%), and on the other hand, colim,, _, o Symghx is by definition equal to Symy 2"
Thus, we get a functorial morphism from Sym"(Z") to Symy(2") which we denote it
by 97, O

Corollary 4.1.6. For every pointed simplicial sheaf 2, there is a functorial morphism

Vo : Sym™(2") — Symy(2).
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Proof. Tt follows from the previous Proposition [f.1.5 O

For each n € N, we denote by J": Sym"™ — Symy the natural transformation defined

for every pointed simplicial sheaf 2" to be the functorial morphism 9" (2"):=19"% of

Corollary

Lemma 4.1.7. Let p: X — Y be termwise coprojection in A°PEy and let us write
f::AOPh:g. Then for every pair of numbers (n,i) € N? with 0 < i < n, there erists a
canonical morphism

OF () L) = Z1(),

such that one has a commutative diagram

Ly(f) —=Li(f) == ==Ly () —= La(f) (4.9)
I (f) 3 (f) I () I (f)
L) —A4()—- = L) — L))

Proof. Let us fix a natural number n. For each index 0 < i < n, Z"(f) is nothing
but the object A°Pht,
07 ()

monoidal, O} (f) is canonically isomorphic to AOphgn(@). Thus, we have a canonical

see Proposition [3.2.21L Since the functor h*: ¢, — % is

morphism O (f) — £ (f), and this morphism induces a morphism
O (f): Li'(f) = £ (f)-
Since Y7 (f) is constructed canonically, we get a commutative diagram ({4.9). O

Example 4.1.8. Let us consider a coprojection X — X VY in A°P%, and let f be

the morphism AOph;f. We have a commutative diagram

APhY A AP (Aoph; v Aoph;) A AP (4.10)

| |

A°PRE A (AOph} Vv AOph;S) — (A"ph} Vv A"ph;}> A (A(’ph} vV AOph;Z>
which is induced by a diagram

XNX (XVY)AX

| |

XANXVY)—=(XVY)A(XVY)
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Then, one gets canonical morphisms

9o Li() — Z5(f).
G L) — L),
95(): L3() — Z3(f),

where their domains have the form

|

0(f) = APhL,
2 __ AOPL+ opyz,+

07 (f) = APhx  xuyy Naoent AP xuy)ax
2
2

O3(f) = A®hL .y ANAPRE

and their codomains have the shape

L) = APhS

Sym?2X ’

Bg/ﬂl?(f) - AOph’—S’_meX A <Aoph;—ym1X v AOph—S’—yle) ?

L) = APRE, o A (APRE 1 VAPKE L) NAPRE

Proposition 4.1.9. Let f: Z — % be a morphism of pointed simplicial sheaves in
It .
proj
a canonical morphism

such that Z is an I;Oj—cell complex. Then for every index 0 < ¢ < n, there exists

O () Li(f) = (),

such that one has a commutative diagram

Ly(f) —=Li(f) == =Ly () —= La(]) (4.11)
9 (f) 93 (f) U0 I (f)
L) —=A()— =L () —= L))

where U3 (f) = 9% and 97(f) = 07,.

Proof. By virtue of Lemma [3.2.27, the morphism f can be expressed as the colimit
of a directed diagram {fj}qep of termwise coprojections of representable simplicial
sheaves. Let us fix an index 0 < i < n. By Lemma [£.1.7] we have canonical morphisms
VM fa): L} (fa) = &£ (fa) for d € D. Hence, taking colimit we get a morphism

colim deDﬁ?(fd): colim deDL?(fd) — colim deDo%n(fd) )

This morphism gives a morphism from L}(f) to -Z"(f), and we denote it by 97(f).
Finally, the diagrams of the form (4.9) induce a commutative diagram of the form
(4.11]). O
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By virtue of Proposition for each n € N, we get a natural transformation
n. n n
¥": Sym" — Symy .

Theorem 4.1.10. The natural transformations 9": Sym" — Symyg, for n € N induce
a morphism of \-structures from the left derived categoric symmetric powers to the left

derived geometric powers on J.(Cnis, A).

Proof. The natural transformations J": Sym" — Symyg, for n € N, induce a natural
transformation of derived functors Ly": LSym™ — LSymy on J(6\is, A'). Hence, by
Proposition the endofunctors LY" defines a morphism of A-structures. O

Geometric versus categoric symmetric powers

Let % be the category of quasi-projective schemes over a field k. It turns out that, if
X is the 2-dimensional affine space A? over k, then the canonical morphism V' from
Sym"hx to Symghx is not an Al-weak equivalence in A°.7, see Proposition [4.1.12].

Lemma 4.1.11. Let X be a scheme in €. The morphism of simplicial presheaf
0% : Sym"hx — Symghx is an Al-weak equivalence if and only if for every A'-local
simplicial presheaf & the induced morphism (9%)*: 2°(Sym"X) — Z(X™)* is a weak

equivalence of simplicial sets.

Proof. By definition of Al-weak equivalence, 9% is an Al-weak equivalence if and only

if for every A'-local simplicial presheaf the induced morphism
(%) : Map (Symghx, Z) — Map (Sym"hx, Z)
is a weak equivalence of simplicial sets. On one side, we have
Map (Symghx, Z) = Map (hsymnx, Z) ~ 2/ (Sym"X),

where the above isomorphism follows from the Yoneda’s lemma. On the other hand,

the functor Map (—, Z) sends colimits to limits, in particular, we have
Map ((hX")/%n, Z) =~ Map (A", 2)" .
Then, we have
Map (Sym"hx, Z) ~ Map (h¥", Z)*" ~ Map (hxn, Z)>" ~ Z(X")>".
Thus, the lemma follows. O

Proposition 4.1.12. Let X = A? be the 2-dimensional affine space over a field k.

Then, the natural morphism V% is not an Al-weak equivalence.
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Proof. We recall that Chow groups CH*(—), for i € N, are A'-homotopy invariant (see
[9]). Then CH*(—) is Al-local as a constant simplicial presheaf. We take 2° = CH'(—)
in the previous lemma. On one side, we have X? = A% hence CH!(X?) = CH'(A%)
is zero, see [9, p. 23]. On the other hand, Sym?(A?) is isomorphic to the product
of A% with the quadric cone Q defined by the equation uw — v? = 0 in A3. By the
A'-homotopy invariance, CH'(A? x Q) is isomorphic to CH'(Q). By Example 2.1.3
of [9], CH'(Q) = CHy(Q) it is isomorphic to Z/2Z. Then (¥2,)* is the morphism of
constant simplicial sets induced by a morphism of sets Z/2Z — 0. Since Z/2Z consists
of two points, the morphism (1912)* cannot be a weak equivalence. We conclude that

ﬁig is not an isomorphism in the motivic Al-homotopy category. O

4.2 Stable set-up

The main result in this section is Theorem [4.2.9) which says that geometric symmet-
ric powers induce a A-structure on the stable motivic homotopy category, under the
assumption of the existence of their left derived functors.

We set I7 proj:= Unzo Fn(II';Oj), where I;roj
Similarly, we define a set I7 .5, but in this case Fj, is seen as a functor from
A°P.Z, to Spty/ (k).

Our next goal is to study Kiinneth towers associated to relative I pq5-cell com-

is the set of morphisms defined in page

plexes, see Proposition [£.2.3]
Lemma 4.2.1. One has the following assertions:

(a) A morphism of representable T'-spectra is isomorphic to the image of a morphism

of P}F-spectm through the functor H'.

(b) Let
o

X (4.12)

B v

be a cocartesian square of T'-spectra, such that the morphism o — RB is the

image of a level-termwise coprojection in Sptm(AOP‘KJF) through the functor H'.

Then, if Z is a representable T'-spectrum, then so is % .

(¢) Consider the diagram (4.12). Suppose that o/ and B are compact objects. If
Z is in Sptyp (APL)7, then so is & . Moreover, if 2 is a directed colimit of

representable T'-spectra that are compact, then so is % .
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Proof. (a). It is a termwise verification.

(b). Let us write & = H'(A), & = H'(B) and 2 = H'(X), where A, B and X
are objects of SptPL(A"p(ér). Suppose that &/ — 2 is a morphism of the form H'(yp),
where ¢: A — B is a level-termwise coprojection in Sptp}r (A°P%,). By item (a), the
morphism & — £ is canonically isomorphic to a morphism of the form H'(v), where
¥: A — X is a morphism in Spt]pl+ (A°PE,). Since p is a level-termwise coprojection,

there exists an object Y in SptPi (A°P%) such that there is a cocartesian square

(g

A X
o)
B Y

Hence, % is isomorphic to H'(Y'). This proves (b).
(¢). It is immediate from item (b) and the fact that finite colimits of compact

objects are compact. O

Lemma 4.2.2. Every It proi-cell complex of Sptp(k) is the colimit of a directed diagram
of the form {Zytaep such that, for d < d' in D, the corresponding morphism from
Zq to Xy is a level-termwise coprojection of compact representable T-spectra. Every
I7 proj-cell complex of Sptp(k) is in Spty(APE)7.

Proof. We reduce the problem in showing that every Iz i-cell complex of Spty (k)
is in Spty(A°PL)#. Since an element of I7v pi-cell is a transfinite composition of
pushouts of element of Iz .;, this follows by transfinite induction in view of Lemma
Flzfl and the fact that the domain and codomain of the elements of I7+ ,,,; are compact.

O

Proposition 4.2.3. Let f: 2 — % be a morphism in It pro5-cell, where 2 is an

I7 proj-cell complex. Then, for each n € N, SymZ}T(f) has a functorial Kinneth tower.

Proof. By virtue of Lemma one deduces that the morphism f can be expressed
as the colimit of a directed diagram {fy}4ep of level-termwise coprojections of repre-
sentable T-spectra. Hence, by Proposition [3.3.20] the nth fold geometric symmetric

power Symy r(fq) has a canonical Kiinneth tower
25 (fa) —= 20 (fa) —= - —= L2 (fa) - (4.13)
For each index 0 < i < n, we define
L (f):=colim 4qe p-Z"(fa) -
Then, we get a sequence

L) — A4'(f) — - — L)) (4.14)
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which is a Kiinneth tower of Symy (f). O
Lemma 4.2.4. The set I1pro; permits the small object argument.

Proof. Notice that one has to prove that for every pair (n,m) € N? and every object U
of €, the object Fy,,(0Ay[n]4) is compact relative to I proj, see [17] for the definition of
a compact relative object. Since the category A°P.¥, is a cellular model category with
. . . +
respect to the projective-local model structure (Theorem [2.1.12)) having I proj
set of generating cofibrations, we can follow the arguments of the proof of Proposition
A.8 in [19]. O

as its

Corollary 4.2.5. There exist a functorial factorization («,3) on Spty(k) such that
for every morphism f is factored as f = B(f) o a(f), where a(f) is in It proj-cell and
ﬂ(f) 18 1N IT,proj —inj.

Proof. 1t is a consequence of Lemma |4.2.4 O

Proposition 4.2.6. Fvery cofibre sequence in SHr(k) is isomorphic to a cofibre se-

quence of the form

A = B — B,

where o/ — B is in I proj-cell and o/ is an I7 proj-cell complex.

Proof. Let & — % — % be a cofibre sequence in SHy(k), where f is a projective
cofibration from 2" to % in Sptp(k), such that 2 = # /2. By Corollary
the morphism * — 2~ factors into * — & — 2 . Again, by Corollary the

composition of & — 2" with f induces a commutative diagram

4 B
B(f)
Z %

where ((f) is a sectionwise trivial fibration and a(f) is in Ir proj-cell. By [18, Prop.
6.2.5], the cofibre sequence &/ — A — 9B/ is isomorphic to the cofibre sequence
2 Yo i sHr k).

O

Lemma 4.2.7. For any T-spectrum 2", there is an isomorphism
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Proof. Notice that for a symmetric P} -spectrum U, we have that Ev,,(H(U)) coincides
with A’Jph;}n. By virtue of Lemma we get canonical isomorphisms

Evy, (colim HU) Q;H(U)> = colim ) APh = colim popy 5. APhY = 25,
which allow us to deduce the expected isomorphism. O

Corollary 4.2.8. For any T-spectrum 2", there is an isomorphism Sym;T(%) ~Z.

Proof. For n = 1, the equalizer of diagram (3.25|) is H(U). Hence, we are in the case
of Lemma 2.7 O

Now, we are ready to state and prove our main theorem.

Theorem 4.2.9. Suppose that, for every n € N, the left derived functor LSymr
exists on SHp(k). Then, the endofunctors LSym%’g, for n € N, provides a A-structure
on SHr(k).

Proof. We have evidently that LSymgvT is the constant functor with value 1. By
Corollary LSym;,T is the identity functor on SHp(k). Let Z° — ¥ — %
be a cofibre sequence in SHy(k) induced by a cofibration f: 2" — % in Sptp(k).
By Proposition we can assume that f is in I7pej-cell and 2 is an Iz proj-cell
complex. Hence, by Proposition for each index n € N, Symy (f) has a Kiinneth

tower,
Symg r(27) = L' (f) = Z"(f) = - = Z/(f) = Symg (¥, (4.15)
which induces a Kiinneth tower,
LSymyp(2) = LL'(f) = LL(f) = --- = LLJ(f) = LSymg (%) ,

of LSymZ’T( f). The functoriality axiom follows from the functionality of Kiinneth

towers of the form (4.15)). O

4.2.1 A morphism of lambda-structures

For a symmetric T-spectrum 2", we shall construct a natural morphism 9" from
Symy(27) to Symy r(£7). The main result is Theorem [4.2.13

Proposition 4.2.10. Let 2" be an object in Spty(k) and let n € N. Then, we have a
canonical morphism 9" : Symy(2") — Symg (27).
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Proof. We define 9" to be the colimit of the morphisms 9% of Lemma@ where
H(U) — % runs on the objects of the comma category (H | Z£7). By definition
Symy 2" = colim g (7)— o-Symy pH(U). It remains to show that there is a canonical
isomorphism Sym7 2" = colim g (7)o Sym7H(U). Notice the Cartesian product of
A°P% induces a Cartesian product on category (H | Z°). By Lemma and
Lemma we deduce an isomorphism 2™\ ~ colim H)—»2H (U)"". By the same
argument, we deduce that the product 2" Asym(T)A Z A---Asym(T) A Z", in which

the object 2~ appears n times, is isomorphic to the colimit
colim (1) o <H(U) Asym(T) A H(U) A -+ - Asym(T) A H(U)) .

By change of colimits and by the above considerations, we deduce that the colimit of

the diagram

<38’/\8ym(T)/\%/\---/\sym(T)/\%) /Zn ...... 2,

is a double colimit, that is, the colimit of the colimits of diagrams of the form

(H(U) Asym(T)NH(U) A --- Asym(T) A H(U)) Iy, H(U)™/s,

where H(U) — £ runs on the objects of (H | £7). This implies that Sym7.2 is
isomorphic to colim (i) 2-Sym7-H (U). O

For each n € N, we denote by ¢": Symy — Symy , the natural transformation de-

fined for every pointed simplicial sheaf 2~ to be the functorial morphism 9" (.2") : =97, .

Lemma 4.2.11. Let p: X =Y be a level-termwise coprojection in SptPi(A‘)p‘ér) and
let us write f:=H(yp). Then, for every pair of numbers (n,i) € N? with 0 < i < n,

there exists a canonical morphism
0P (f): Li'(f) = £ (1),

such that one has a commutative diagram

Ly(f) —=Li(f) == =Ly (f) —= La(f) (4.16)
93 (f) 93 (f) 71 (f) I (f)
L) —A()— =L () — L)

Proof. Let us fix a natural number n. For each index 0 < i < n, Z"(f) is nothing
but the object H(O}(y¢)), see Proposition [3.3.20, Since the functor H is monoidal,

07 (f) is canonically isomorphic to H(O}'(¢)). Thus, we have a canonical morphism

or(f) = Z"(f), and this morphism induces a morphism 97 (f): L*(f) — Z™(f).

(2

Since U7'(f) is constructed canonically, we get a commutative diagram (|4.16)). O
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Proposition 4.2.12. Let f: Z° — % be a morphism of T-spectra in I pro; such that
2 is an I proj-cell complex. Then, for every index 0 < i < n, there exists a canonical
morphism

VP () L) = 40,

such that one has a commutative diagram

Ly(f) —= L) == == L5 (f) — Lya(f) (4.17)
95 (f) 97 (f) Vn1(f) I (f)
L) —=24()—- =L () —= L)

where U5 (f) = 0% and Op(f) = U,.

Proof. As in Proposition the morphism f can be expressed as the colimit of a
directed diagram { fy}4ep of morphisms of representable T-spectra. Let us fix an index
0 < i <n. By Lemma 4.2.11} we have canonical morphisms 97 (fq): L} (fa) = £ (fa)

for d € D. Hence, taking colimit we get a morphism
colim ge p¥;' (fa) : colim gep Li' (fa) — colim qe p. 247" (fa) ,

This morphism gives a morphism from L}(f) to -Z*(f), and we denote it by 97 (f).
Finally, the diagrams of the form (4.16]) induce a commutative diagram of the form
@17). O

Theorem 4.2.13. Suppose that, for every n € N, the left derived functor of Symg,T
exists on SHr(k). Then, the natural transformations 9™ : Sym’. — Symyg p, for n € N,
mduce a morphism of A-structures from the left derived categoric symmetric powers to

the left derived geometric powers on SHr(k).

Proof. 1t follows from Proposition and Proposition 4.2.6 O

4.3 Comparison of symmetric powers

The main result in this section is Theorem [4.3.20] which asserts that if —1 is a sum
of squares, then the categoric, geometric and projector symmetric powers of a quasi-

projective scheme are isomorphic in SH7(k)g.
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4.3.1 Formalism of transfers

The purpose of this section is to study the notion of transfer of morphisms in a cat-
egorical context involving the transfers that appear in topology, in homotopy theory,

and in the theory of pure motives and Voevodsky’s motives.

In the next paragraphs (2, A) and (&, ®) will be two symmetric monoidal categories,

where & is an additive category. Let
E:(2,N) = (&,9)

be a monoidal functor. Let us fix a finite group G and suppose that X is a G-object
in 2 with a representation px: G — Aut(X) of G on X. The functor E induces
an homomorphism of groups Aut(X) — AutE(X). Notice that the composition of
this homomorphism with px gives an homomorphism of groups G — AutE(X), hence
G acts on E(X). This homomorphism induces an homomorphism of Abelian groups
Z|G] — EndE(X).

Definition 4.3.1. The norm NmE(X) of E(X) is the image of the element > ;g
under this map. Explicitly, it is given by the formula

NmE(X) =Y Elpx(9))-
geG
Now, suppose that the quotient X/G exists in Z and let 7: X — X/G be the

canonical morphism.

Definition 4.3.2. The transfer morphism, or simply, the transfer of E(m) is a mor-
phism

trf(n): B(X/G) - B(X),
such that E(r) o tr¥ () = n - idg(x/q) and tr¥(7) o E(7) = NmE(X).
Example 4.3.3. Consider (2, A) to be the category of quasi-projective schemes over
a field k together with the Cartesian product of schemes over k, and consider (&, ®)
to be the category of qfh-sheaves together with the Cartesian product of sheaves. For

every n € N and for every quasi-projective k-scheme X, the canonical morphism from
Zgm(X™) to Zgm(Sym"X) has transfer, see Proposition [4.3.11

The following example is a consequence of the previous one.

Example 4.3.4. If (Z, A) is the same category as in the previous example, and if (&, ®)
is the category of gfh-motives together with the monoidal product of gfh-motives [39],
then the canonical morphism of gfh-motives Mqm(X"™) — Mym(Sym"™X) has transfer.
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Let us study the case when G is the symmetric group X, acting of the nth fold

product X" of an object X of 2. Since E is monoidal we have an isomorphism
E(X") ~ B(X)®™.

Assume that the quotient E(X)®"/%,, exists in & and let o: E(X"\") — E(X)®" /%, be
the composition of the isomorphism F(X"") ~ E(X)®" with the canonical morphism
E(X)®" — E(X)®"/%,. One has a commutative diagram

- E(X)®" /8, "= B(X""/S,)
B(XN") B(r)

where the dotted arrow exists by the universal property of quotient by >,,. Let us keep
these considerations for the proof of Proposition

A Q-linear category is a category enriched over the category of Q-vector spaces.

Proposition 4.3.5. Suppose E: (Z,N\) — (&,®) is a monoidal functor of symmetric
monoidal categories, where & is also a Q-linear category. Let X be an object of 7, and
assume that X\ /%, exists in 2 and E(X)®" /%, exists in &. Let m: X\ — X\ /%,
be the canonical morphism, and suppose that E(m) is an epimorphism and has a transfer

trf (7). Then, the universal morphism
u: BE(X)®"/S, — E(X""/%,)
s an isomorphism.

Proof. Let consider the diagram (4.18]). Set &:=p o tr® (7). We have
Eouog=gotrf(m)ouop
E
=potr(m)o E(m)
(4.19)
=poNmE(X)
=n!-o.

Hence, £ ouo 9 = n!- g. From the universal property of E(X)®"/%,,, one deduces that
o is an epimorphism. This implies the equality £ o u = n!-id. On the other hand, we

have
uo <71' > oE(r)=uo (% . QOtI‘E(ﬂ')> o E(m)
_ % (E(w) o tr? (m) oE(W)) (4.20)
= % - (n!- E(m))
= E(r)



It follows that uwo (1/n!- &) o E(n) = E(w). By assumption F(7) is an epimorphism.
Therefore, we get uo (1/n!-¢) = id and conclude that u is an isomorphism with inverse
1/n!-&. O

Remark 4.3.6. In the previous proposition it is enough to assume that & is a Z[%]—

linear category.

Projector symmetric powers

Let (7,®) be a Q-linear symmetric monoidal triangulated category. We fix an object
X of 7. For a positive integer n, we have a representation pyen: 3, — Aut(X®") of

¥, on X®" induced by permutation of factors. Set

dn::% -Nm(X®") = % : Z pxen(0).
0€XR
This endomorphism is nothing but that the image of the symmetrization projector
1/n!-3", cx, o under the induced Q-linear map Q[X,] — End(X®"). Since the category
7 is a Q-linear triangulated category with small coproducts, it is a pseudo-abelian
category, see [31]. As d,, is idempotent, i.e. d,, o d, = d,, it splits in .7. This implies
that p has an image in .

Definition 4.3.7. We write
Symyp, (X):=imd,,,

and call it the nth fold projector symmetric power of X.
By convention, for n = 0, Symy, (X) will be the unit object 7.

Example 4.3.8. Let DM~ (k, Q) be the Voevodsky’s category with rational coefficients
over a field k [27]. A k-rational point of smooth projective curve C' induces a decom-
position of the motive M(C) into Q & M'(C) @ Q(1)[2] in DM~ (k,Q). The nth fold
projector symmetric power Symp, (M L(C)) vanishes for n sufficiently bigger that 2g,
where g is the genus of C.

We recall that a stable model category (Definition [1.3.17)) is called Q-linear, if its

homotopy category is a Q-linear triangulated category.

Proposition 4.3.9. Let & be a simplicial symmetric monoidal Q-linear stable model

n

prs Jor all n € N, induce a

category [6]. Then, the projector symmetric powers Sym
A-structure on Ho (2).
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Proof. By convention Symgr is the constant endofunctor whose value is the unit object
of Ho (%). From the definition, the endofunctor Symll)1r is the identity on Ho (¥). Let
X — Y — Z be a cofibre sequence in Ho (¥¢). By [14, Proposition 15], there exists a

sequence
Symyp, (X) = Ag = A1 — -+ = A, = Symp, (V) (4.21)

in Ho (%), such that for each 0 < i < n, we have
cone(A;—1 — A;) = Symg;i(X) ® Sym;r(Z) ,

where A_1 = 0. Thus, the Kiinneth tower axiom is satisfied. The functorial axiom

on cofibre sequences follows from the functorial construction of the sequences of the

form(4.21)), see loc.cit.
O

Let 7 be a Grothendieck topology on an admissible category ¥. We denote by
Zr(—): Shv(€) — Ab.(F)

the functor which sends a sheaf F' in Shv.(%) to the Abelian sheaf Z,(F) freely gen-
erated by F' . Denote by

Q- (=): Shv(€) — Ab(¢) 2 Q

the composition of the functor Z,(—) with the canonical functor Ab, (%) — Ab,(¢)®Q.
Notice that Ab, (%) ® Q is identified with the category of sheaves of Q-vector spaces.
For an object X of ¥, we shall often write Z,(X) instead of Z.(hx). Similarly, we
write Q,(X) instead of Q- (hx).

Lemma 4.3.10 (Voevodsky). Let X be a quasi-projective k-scheme and let w be the
canonical morphism from X™ onto Sym™(X). Suppose F is a qfh-sheaf of Abelian

monoids on the category of k-schemes of finite type, and let
7 F(Sym"(X)) — F(X")
be the restriction morphism induced by w. Then the image of ™ coincides with F'(X™)>.

Proof. As the morphism 7 forms a qfh-covering of Sym™ (X)), we follow the arguments
of the proof of [39, Prop. 3.3.2] or [37, Lemma 5.16]. O

Proposition 4.3.11. Let X be a quasi-projective k-scheme and let w: X™ — Sym"(X)

be the canonical morphism for an integer n > 1. Then, the induced morphism

quh(ﬂ'>: quh(Xn) — Zqﬂl(Sym"X)

191



has transfer, i.e. there exists a morphism tr(mw) such that
Ly () o tr(m) = Z Zgsn (0), and (4.22)
g

Zqgm(m) o tr(m) = n!-idz_; (symmx) - (4.23)

Proof. Let us consider the representable gfh-sheaf F' = Zqn,(X™). Every permutation o
in 3, induces an automorphism o: X™ — X" by permuting factors, o corresponds to an
element of F'(X™), denoted by the same letter. Notice that the element 0,:=3" s o
is an element of F(X™) which is ¥,,-invariant, i.e. o(6,) = @ for all permutation o € %,,.
By Lemma there exists an element t,, of F/(Sym"X) such that ¢, o7m* = 6. We
denote by tr(m): Zgm(Sym™) — Zqm(X™) the morphism of gfh-sheaves corresponding
to the section t,. Then the equality ¢, o 7* = 6 gives the equality . Now, from

[T23), we have
L () © tr(m) © Zom (7) = (Z quh(a)> © Zfnn ()
= Zgzqfh(a) 0 Zgm ()

=n! Zgm(r).
hence, Zqm () o tr(m) 0 Zgsm (m) = n! - Zqm (7). This induces the equality (4.23]). O
Lemma 4.3.12. For every object X object in an admissible category, we have canonical

isomorphisms
quh(X)@n/En ~ Z(Sym"hx),

quh(X)®”/En ~ Q(Sym"hx) .
Proof. These equalities follow since both Zgm(—) and Qgem(—) are monoidal and left

adjoint functors. O

Corollary 4.3.13. Let X be a quasi-projective k-scheme. Then, the canonical mor-
phism Qqm(Sym"hx) — Qqm(Symghx) is an isomorphism of qfh-sheaves of Q-vector
spaces.

Proof. Let m: X™ — Sym"™(X) be the canonical morphism. By Proposition
the morphism Zggm (1) : Zgm(X)®" — Zgm(Sym”X) has transfer, then the morphism
Qqfn () : Quen(X)®"™ = Qqm (Sym™X) has also transfer. Notice that Qqm(7) is an epi-
morphism. Hence, by Proposition the morphism Qg (7) induces an isomorphism

Qqm (X)¥"/En = Qqm(Sym" X)) .

Finally, by Lemma [4.3.12] Qg (X)®" /%, is isomorphic to Qum(Sym"hy), and by def-
inition, Qqm (Sym"X) is equal to Qqm(Symghx) . O
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Corollary 4.3.14. Let X be a quasi-projective k-scheme. Then the morphism from
Qqm(Sym"hx) to Qum(Symyhx) is an isomorphism in DMgp (k)q-

Proof. Tt follows from Corollary 4.3.13| and [6, Prop. 5.3.37]. O

Let
quh,Q: YCh/k — Dquh(k)Q
be the canonical functor from the category of k-schemes .7ch/k of finite type to
DMy (k)q-

Corollary 4.3.15. Let X be a quasi-projective k-scheme and let m: X™ — Sym"(X)

be the canonical morphism. Then the morphism Mqm () has transfer.
Proof. 1t follows from Proposition O

Let Eg be the canonical functor from the category of k-schemes of finite type to

SH1(k)g.

Corollary 4.3.16. Suppose that —1 is a sum of squares in a field k. For a quasi-
projective k-scheme X, the induced morphism Eg(m) from Eg(X™) to Eg(Sym"™X) has

transfer.

Proof. 1t follows from Corollary and Corollary [2.4.3]
O

Proposition 4.3.17. Assume —1 is a sum of squares in a field k. For a quasi-projective

k-scheme X, one has an isomorphism
Symp, Eg(X) ~ Eg(Sym"X).

Proof. By Corollary the morphism FEg(m) has transfer, say trg(m). From the
equality trg(m) o Eg(m) = Nm(Eg(X)), we obtain that the projector d,, is equal to
1/n! - trg(m) o Eg(w). Hence, from the equality E(m) o trg(m) = nl.id, we deduce that
imd,, ~ Egp(Sym"X). O

Remark 4.3.18. All the results of this section are also valid in the stable motivic

homotopy category with Z[%]—coefﬁcients for a fixed natural number n.
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4.3.2 Main theorem

In the next paragraphs we shall prove our main theorem which states that for a k-
scheme in %, the canonical morphism from LSymfEg(X) to LSymy pEg(X) is an
isomorphism in the stable A'-homotopy category on 4. We recall that SHr (k) is the

stable homotopy category of schemes over a field k constructed in [22].

Proposition 4.3.19. Suppose that —1 is a sum of squares in k. For every quasi-

projective k-scheme X, the canonical morphism
Symi(SFX ) - TP (Sym" X)
is a stable rational A'-weak equivalence.

Proof. By Lemma the morphism Sym7 (XX, ) — X (Sym"X) is isomorphic
to the T-suspension of the canonical morphism Symy(hx, ) — Symg r(hx, ) of pointed
simplicial sheaves. Hence the proposition follows from Corollary and Corolary
2.4.9) [

Next, we compare the three types of symmetric powers in the stable rational ho-
motopy category of schemes over a field. More precisely, the left derived functors of
the categoric, geometric and homotopy symmetric powers of a suspension of a repre-
sentable sheaf coincide. We recall that Eg is the canonical functor from the category
of k-schemes of finite type to SHr(k)g.

Theorem 4.3.20. Suppose that —1 is a sum of squares in a field k. For any quasi-

projective k-scheme X, we have the following isomorphisms
LSym7Eg(X) ~ Eg(Sym"X) ~ Symp, Fp(X).

Proof. The isomorphism on the left-hand side follows from Proposition [£.3.19] The
second isomorphism follows from Proposition [4.3.17 O

Let us consider the sets I =, ~o Fn(I), Jf = U,=q Fn(J), where I (resp. J) is
the class of generating (resp. trivial) cofibrations of the injective model structure of
A°P.Z,. Denote by Wz'f the class of morphisms of symmetric T-spectra f: 2 — #
such that each term f,: 2, — %, is an Al-weak equivalence for n > 0. The sets ij ,
J:,'f and the class W:,Jf define on Spty (k) a cofibrantly generated model structure called
positive projective model structure, see [I13]. The positive projective cofibrations are
projective cofibrations that are isomorphisms in the level zero.

For a T-spectrum 2" in Spty(k), the nth fold homotopy symmetric power Symy, (2)

is defined as the homotopy colimit hocolimy,, 2", The Borel construction allows one
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to express Symj, 7(27) as the homotopy quotient (EX,)y As, 2", where EY, is
the ¥,,-universal principal bundle, see Definition [1.2.24] The canonical morphism from
(EXn)+ A 2" to 2™ induces a morphism

Symp, 7(27) = Symz(2),

which is a stable Al-weak equivalence when 2" is a cofibrant T-spectrum with respect
to the positive projective model structure. This implies the existence of an isomorphism
of endofunctors

Symj, p(27) = LSymi (4.24)

on stable Al-homotopy category SHr(k), see [12].

Remark 4.3.21. By Theorem|4.3.20| and (4.24)), we get the following isomorphisms

Symj, pEq(X) ~ LSym7Eqg(X) ~ Eg(Sym"X) ~ Symy, Eq(X)
for any quasi-projective k-scheme X.

Example 4.3.22. Let X be the 2-dimensional affine space A2 over k. Then, by Propo-
sition the canonical morphism Ldx: LSym”hx ~ LSymyhy is not an isomor-
phism in the unstable motivic category over k. However, by Theorem[4.3.20} 9 x induces
an isomorphism LSym7 Eg(X) ~ Eg(SymgX).
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Appendix A

Transfers

The notion of transfer appears in several contexts in mathematics. For instance, in
topology one has the notion of transfer associated to a finite covering of topologi-
cal spaces p : X — S, that is, if p. : H(X,Z) — H.(Y,Z) is the corresponding
homomorphism of singular homologies, then the transfer of p is a homomorphism
tr(p) : Ho(Y,Z) — H.(X,Z) such that the composition p, o tr(p) is the multiplica-
tion map by the degree of p.

In [39], Voevodsky proves the existence of transfers in the category of gfh-sheaves
and in the category of triangulated motives. More precisely, if p : X — S is a finite
morphism of separable degree d, where S is a normal connected scheme, then there is

a morphism of sheaves in the qfh-topology, called transfer,
tr(p) : Zgm(X) = Zgm(S) ,

such that Zgm(p) o tr(p) = d - idz g (x)- A generalization of this result says that, if
% is any qfh-sheaf and p is the same as before, then there exists a transfer morphism
tr(p) : #(X) — F(9) satisfying the equality tr(p) o p* = d - id #(g), see [37].

gfh-Topologies

Definition A.0.23. We recall that a morphism of schemes p : X — Y is called a
topological epimorphism if p is surjective and a subset A is Zariski open in Y if and
only if p~1(A) is Zariski open in X. A topological epimorphism p : X — Y is universal
if for any morphism Y’ — Y the projection Y’ xy X — Y is a topological epimorphism.
An h-covering of a scheme X is a finite family {p; : X; — X };er of morphisms of finite

type such that the induced morphism I;crp; : [[,.; Xi — X is a universal topological

el
epimorphism. A qfh-covering of X is a h-covering {p; : X; — X };er such that p; is

quasi-finite for all ¢ € I (see [39]).

Example A.0.24. Let p : X — Y be a morphism of schemes. The family with one
element {p: X — Y} is a qfh-covering of Y for instance if:
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(1) p is a surjective proper morphism of finite type, or

(2) Y is the quotient scheme X/G, where G is a finite group acting on X, and

p: X — Y is the canonical morphism.

In the next paragraphs, all qfh-sheaves are defined on the category of schemes of

finite type over a field k.

Definition A.0.25. Let X be an integral scheme and let E/k(X) be a field extension.
We say that X is integrally closed in E, if the local rings of X are integrally closed in
FE at every point of X.

Proposition A.0.26. Let X be an integral scheme and let E/k(X) be a finite field
extension. Then there exists a scheme X' and a morphism X' — X with the following
universal property: For any dominant morphism f : Z — X, where Z is integrally

closed in E, the morphism f factors uniquely through X'.

Proof. Ones uses gluing of schemes to construct X’. O

Definition A.0.27. The scheme X’ in the previous proposition is called normalization
of X in E.

Lemma A.0.28. Let q: X — S be a finite morphism and let G be a finite group acting

on X/S. The following statements are equivalent:

(a) For any point s € S, the action of G on the fibre ¢~1(s) is transitive. Moreover,
for any point x € q~Y(s) the field extension k(x)/k(s) is normal and the natural

homomorphism
stabg(x) — Gal(k(z)/k(s))

18 surjective.

(b) For any algebraically closed field Q0 and for any geometric point n : Spec(2) — S,
the action of G on the geometric fibre X, = X xg Spec(f2) is transitive.

Proof. See [37, Lemma 5.1]. O

Pseudo- Galois coverings

For a scheme X/S, we write Autg(X) to denote the group of automorphisms of X over

S.

Definition A.0.29. Let p: X — S be a finite surjective morphism of integral schemes.
We say that p is a pseudo-Galois covering if its associated field extension k(X)/k(95) is

normal and canonical homomorphism of groups
Autg(X) — Gal(k(X)/k(S))

is an isomorphism.
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Lemma A.0.30. If S is an integral scheme and Y — S is the normalization of S in
a finite normal extension of the field k(S), then Y — S is a pseudo-Galois covering.

Proof. See [37]. O

Lemma A.0.31. Let ¢ : Y — S be a pseudo-Galois covering of an integral normal
scheme S, and put G = Autg(Y).

(a) If F is a qfh-sheaf of Abelian groups, then the restriction morphism q* from
F(8) to Z(Y) induces an isomorphism .F(S) = .F(Y)C.

(b) If f + F — F' is a morphism of qfh-sheaves, then we have a commutative diagram

g
&

FY)©

F'(S) F(Y)C
where the horizontal arrows are isomorphisms.

Proof. (a). For every ¢ € G, we consider the universal morphism fj : Y = Y xgV

coming from the following pullback diagram

Hence the morphisms f4, for ¢ € G, induce a morphism f : [] sccY =Y Xg V.
Observe that the hypothesis implies that f is finite and surjective, hence {f} a qfh-
covering. Since the sheaf .Z is, in particular, separated and {f} a gfh-covering, the

restriction homomorphism
[ FYxsY) = F [V | =20)xG
e
is injective. Since {¢} is a gfh-covering, we have an equalizer diagram

*
* pry

F(S) ———= F(Y)

<g\(Y ><5Y) .

pr3
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Notice that .#(Y)% is the equalizer of the diagram

f*opr]

F(Y) F(Y)xG .

fropr;

On the other hand, as f* is injective, the .#(5) is also the equalizer of this diagram.

Therefore, we have an isomorphism .%(S) = .7 (Y)%.

(b). It follows from the universal property of equalizer. O

Transfers

Here, we review some results from [37] and [39] on transfers of qfh-sheaves.

Theorem A.0.32. Letp: X — S be a finite morphism of separable degree n, where' Y
18 a normal connected scheme and let F be a qfh-sheaf of abelian groups. Then there
is a morphism

tr(p) : F(X) = Z(9),
such that tr(p) o p* = id ()
Proof. We choose a normalization ¢ : Y — S in a finite normal extension of the field

k(S). We set G = Autg(Y). By Lemma [A.0.30, ¢ : Y — S is a pseudo-Galois
covering, hence by Lemma |A.0.31] restriction morphism ¢* : .Z%(S) — %#(X) induces

~

an isomorphism ¢* : .Z(S) = .#(X)%. On the other hand, we consider a morphism
Y P F(X) = F(Y)
ypEHomg (Y, X)

which will denoted simply by > ¥*. Notice that, any ¢ € G induces a bijection
Homg(Y, X) — Homg(Y, X)

given by 1 — ¢ o 1), then the morphism ) ¢* is G-invariant; indeed,

Yoo wt]eet= > (pow) = DY

Y€Homg (Y, X) YeHomg (Y, X) Y€Homg (Y, X)
for all ¢ € G. Hence, the morphism Y ¢* : .Z(X) — Z(Y) factors through .7 (Y)¢.
Then we define tr(p) : #(X) — Z#(S) to be the composite

Z(x) 2% 2(r)¢ L #(s).

It remains to verify that tr(p) o p* = idg(g). Notice that it is enough to see that
(>>9*) op* =n - p*. Indeed, one has the equalities

Yo wfept= Y ow)= ), d=n-q,

Y€EHomg (Y, X) Y€Homg (Y, X) YeHomg (Y, X)

as required.
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Theorem A.0.33. Letp: X — S be a finite morphism of separable degree n, where' Y

is a normal connected scheme. Then there is a morphism of sheaves in the qfh-topology
tr(p) : Zgm(S) = Zgm(X),
such that Zqm(p) o tr(p) = n - idz, g, (s)-

Proof. First of all, notice that for any g € G, the map Homg(Y, X) — Homg(Y, X)
defined by ¥ +— v o g, is bijective, and the element

pcHomg (Y, X)
of Zgm(X)(Y) is G-invariant. We have

Zam(p) © Yoo Za@) | = Y. Zam(poo)
¢€Homg (Y, X) ¢€Homg (Y, X)
peHoms (Y, X)
=n- quh(‘])

Now, let us consider the morphism Zgs (p) : Zgm(X) = Zgm(S). By Lemma |A.0.31|(b)

applied to the morphism ¢ : Y — S, we have a commutative diagram

Zam(X)(5) Zamn(X)(Y)¢
Zam (p)(S) Zgen (p) (V)
T (S)(S) Zgm(S)(Y)©

where the horizontal arrows are isomorphisms by Theorem|A.0.32} Notice that Zqm (p)(Y")

sends > e fomg(v,x) Zam(®) t0 Zgm(p) © (Zd)EHoms(Y,X) quh(¢)) which is equal to
n - Zqm(q). By the above commutative diagram we deduce the equality

Zgfn(p) o tr(p) = n - idz, (s)
as required. O
Let DMy (S) be the category of motives with respect to the gfh-topology and let
My : Sch/S — DMym(S)
be the canonical functor.

Corollary A.0.34. Letp:Y — X be a finite surjective morphism of normal connected

schemes of separable degree n > 0. Then there is a morphism
tr(p) : Mom(X) = Mqgm(Y)
such that Mam(p) o tr(p) = n - idpg g (x)-
Proof. See [39, Proposition 4.1.4]. O
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Appendix B

Further research

A fascinating future research project is to investigate what would be an appropriate
motivic version of the celebrated Barrat-Priddy-Quillen theorem, see [2]. This idea was
suggested by Vladimir Guletskii.

In topology, the Barratt-Priddy-Quillen theorem establishes a weak equivalence

BYA ~QSY,

where the left hand side is the homotopy completion of the classifying space of the

infinite symmetric group Y, and
Q5S° = hocolim,, Q" x"S°

is the space representing stable homotopy groups of spheres. It can be also reformulated
by saying that QS° is homotopy equivalent to Z x B}, where + denotes the Quillen
plus construction. If 77 is the nth stable homotopy group of spheres, see [15], page 384],

then the Barrat-Priddy-Quillen theorem implies an isomorphism,

n(BYY) ~ wf

n -

On the hand, Schlichtkrull proved in [36] a theorem related to the Barratt-Priddy-
Quillen theorem. His result asserts that for any based CW-complex X, there is a
chain of homotopy equivalences between the group completion of the infinite homotopy
symmetric power Symjp°(X) and the space Q(X) = hocolim,Q"¥" X, see Theorem 1.3
in loc.cit.

Now, let us consider the Schlichtkrull’s method in the context of the A'-homotopy
theory of schemes. For a pointed motivic space 2, let Qs(Z") be the homotopy colimit

Qs(2") = hocolim, QX7 2,

where 25 and X, are the simplicial loop and suspension functors of motivic spaces,
see [30]. We denote by Sym}°(Z") the colimit of nth fold homotopy symmetric powers
Symy (2Z") for n € N. A possible statement of a motivic Barratt-Priddy-Quillen theorem

might read as follows:
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Let 2 be a pointed motivic space. Then the group completion of the infinite
symmetric power Sym$°(2") is Al-weak equivalent to the space Qs(Z’) in the

unstable motivic category of schemes over a field.
Let BSym;°(Z") be the classifying space of Symj°(Z"), see [30]. Schlichtkrull’s

method suggests that the above statement might follow from three independent A'-

weak equivalences of the form:

(4)  Symp®(Xs27) =~ B Symg®(2),

(B) QsSymp°(X52") ~ hocolim, Q7 Symp°(X7.27),

(C)  Qs(Z) ~ hocolim, Q2 Symp°(X7.2).

We leave these questions for a future work.
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