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Abstract

In this PhD thesis, we investigate the lambda-structure of geometric symmetric powers

in both the unstable and the stable A1-homotopy category of schemes over a field.

We also establish a comparison between categoric, geometric, homotopy and projector

symmetric powers in the rational stable A1-homotopy category of schemes over a field.
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Introduction

In motivic theory, symmetric powers are an important tool that encode (co)-homological

information of motivic spaces. Generally speaking, motivic spaces depend on two co-

ordinates: one simplicial coordinate and one geometric coordinate, i.e. the category of

schemes. This suggests the possibility of defining symmetric powers of motivic spaces

with a different approach than the categoric ones. In [40], Voevodsky proved a motivic

version of the Dold-Thom’s theorem. The symmetric powers considered in his work

are what we call geometric symmetric powers, as they are induced from the geometric

coordinate.

An admissible category 1 is a subcategory of schemes over a base field, containing

the affine line and it is closed under finite products, coproducts and quotients of schemes

by finite groups. A typical example of an admissible category is the category of quasi-

projective schemes over a field. Geometric symmetric powers are left Kan extensions of

the symmetric powers of schemes considered in an admissible category [40]. Categoric

symmetric powers are the quotients of Cartesian powers of motivic spaces by the action

of symmetric groups. A λ-structure on a model category, or on its homotopy category,

is a categoric version of a λ-structure on commutative rings. As functors, categoric

symmetric powers preserve A1-weak equivalences, and their left derived functors provide

a λ-structure on the pointed motivic homotopy categories of an admissible category,

[13]. The aim of the present work is to develop a systematic study of symmetric powers

in the unstable and stable homotopy category of an admissible category over a field k.

Our first goal is to prove that geometric symmetric powers provide a λ-structure

on the pointed unstable motivic homotopy category as mentioned above. For this pur-

pose we first consider the projective cofibrant resolution on the category of simplicial

Nisnevich sheaves on an admissible category, which is deduced from the small object

argument applied to the class of morphisms resulting by multiplying representable

sheaves with the generating cofibrations of the category of simplicial sets. This allows

us to deduce that every motivic space is A1-weak equivalent to a simplicial sheaf, given

termwise by coproducts of representable sheaves, as it was shown by Voevodsky in the

context of radditive functors, see [40, 41]. The key point is that geometric symmet-

ric powers of morphisms of simplicial sheaves that are directed colimits of termwise

1 f -admissible in [40].
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coprojections have canonical filtrations, called Künneth towers, and they provide a λ-

structure on the motivic homotopy category. This gives the following result (Theorem

4.1.4 in the text):

The left derived geometric symmetric powers provide a λ-structure on the pointed

unstable motivic homotopy category of an admissible category of schemes over a

field.

On the other hand, in both the unstable and the stable case, there is a natural

transformation from the categoric symmetric power Symn to the geometrical symmetric

power Symn
g . Let E be a functor from an admissible category to the unstable (or

stable) A1-homotopy category on an admissible category. An interesting problem is

to investigate whether the canonical morphisms ϑnX : SymnE(X) → Symn
gE(X) are

isomorphisms for all schemes X in an admissible category. It turns out that, in the

unstable case, ϑnX is not always an isomorphism, for example this is the case when X

is the 2-dimensional affine space A2 and n = 2, cf. Proposition 4.1.12. Our second goal

is to show that these canonical morphisms become isomorphisms in the rational stable

A1-homotopy category of schemes. However, the same result is not true in the stable

A1-homotopy category of schemes with integral coefficients (see Remark 3.3.14).

Let us explain our approach towards the second goal. The rationalization of a

stable homotopy category causes the loss of information of torsion objects. However, it

allows us to think of a rational stable homotopy category as a derived category of chain

complexes, and the latter is, philosophically, more accessible to understand. Morel

predicted that rational stable A1-homotopy category of schemes is equivalent to the

triangulated category of unbounded motives with rational coefficients, cf. [29].

An important ingredient to be used in this text is the notion of transfer of a mor-

phism. This notion appears naturally in algebraic topology. For instance, let us consider

a positive integer n and an n-sheeted covering π : X̃ → X. This covering induces a

homomorphism of cohomology groups π∗ : Hr(X;Z)→ Hr(X̃;Z) for r ∈ N. A transfer

for π∗ is a homomorphism tr : Hr(X̃;Z)→ Hr(X;Z) such that the composite tr ◦π∗ is

the multiplication by n. Voevodosky proved the existence of transfers for morphisms of

qfh-sheaves induced by finite surjective morphisms of normal connected schemes. As a

result, this implies the existence of transfers for morphisms of qfh-motives induced by

such finite morphisms of schemes, see [39]. We use this notion in order to get transfers

for the morphisms in the rational stable A1-homotopy category which are induced by

the canonical morphism Xn → Xn/Σn for X a quasi-projective scheme.

Let T be the projective line P1 pointed at ∞, and let EQ be the canonical functor

from the category of quasi-projective schemes over a field k to the rational stable A1-

homotopy category of T -spectra. We denote by Symn
T the nth fold categoric symmetric

power on the category of symmetric T -spectra. Since the rational stable homotopy
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category of schemes is pseudo-abelian, one can use projectors in order to define pro-

jector symmetric powers, denoted by Symn
pr. As a result, we obtain that if −1 is a

sum of squares then the categoric, geometric and projector symmetric powers of a

quasi-projective scheme are isomorphic in rational stable A1-homotopy category. More

precisely, our result is the following (Theorem 4.3.20 in the text):

Let k be a field such that −1 is a sum of squares in it. Then, for any quasi-

projective k-scheme X, we have the following isomorphisms

LSymn
TEQ(X) ' EQ(SymnX) ' Symn

prEQ(X) .

Another type of symmetric power is the nth fold homotopy symmetric power of a

symmetric T -spectrum, defined as a homotopy quotient of the nth fold smash product

of this spectrum by the symmetric group Σn; we denote by Symn
h,T the corresponding

endofunctor on the category of motivic symmetric T -spectra. There are natural trans-

formations Symn
h,T → Symn

T for n ∈ N. It turns out that they induce a morphism of

λ-structures on the category of symmetric T -spectra, and it becomes an isomorphism in

the stable homotopy category, [12]. Consequently, for a quasi-projective k-scheme X,

the nth fold homotopy symmetric power Symn
h,TEQ(X) is isomorphic to LSymn

TEQ(X).

Thus we get a comparison of four types of symmetric powers in the rational stable A1-

homotopy category.

In this thesis, we construct a stable geometric symmetric power Symn
g,T having the

property that the composite Symn
g,T ◦Σ∞T is isomorphic to Σ∞T ◦Symn

g , where Σ∞T is the

T -suspension functor, see Section 3.3 for a detailed exposition. This property allows

to deduce that Symn
g,T preserves stable A1-weak equivalences between T -spectra that

are the T -suspension of nice motivic spaces, but this fact does not suffice to deduce the

existence of the left derived functor of Symn
g,T for n > 1. This problem will remain open

in the text. However, there is a natural transformation Symn
T → Symn

g,T for every n ∈
N. Assuming the existence of left derived functors of the stable geometric symmetric

powers, we show that the endofunctors LSymn
g,T , for n ∈ N, induce a λ-structure on

the stable motivic homotopy category (Theorem 4.2.9) and the natural transformations

LSymn
T → LSymn

g,T induce a morphism of λ-structures (Theorem 4.2.13).

Although in this thesis we are limited to work only over a base field, our con-

structions might be generalized to a broader class of nice base schemes. It would be

interesting to investigate how to construct categoric (resp. geometric) symmetric pow-

ers in a more general framework, namely on the premotivic categories (resp. premotivic

categories with geometric sections) defined in [6]; but we leave this question for a future

project.
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Organization of the thesis

In Chapter 1, we recall useful tools of homotopical algebra. We also outline important

results on the category of symmetric spectra developed in [19]. In Chapter 2, we give a

survey of both the unstable and the stable A1-homotopy theory of schemes over a field,

[30]. Here, we also study simplicial radditive functors, [41]. Chapter 3 contains the

essential part of the thesis. In it we construct Künneth towers of geometric symmetric

powers of motivic spaces in both the unstable and stable set-up. In Chapter 4, we

present our main results: Theorem 4.1.4 (for the unstable case) and Theorem 4.3.20

(for the stable case).
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Chapter 1

Categoric and homotopic aspects

This chapter contains preliminary materials of abstract homotopical algebra which are

the basis and foundation of the next chapters.

1.1 Rudiments of Model categories

According to D. Quillen, a “model category” means a category of “models” for a ho-

motopy category. The original reference for model categories is the well known book

titled “Homotopical algebra” published in 1967, see [32].

1.1.1 Preliminaries

In this section, we recall basics on model categories, their fundamental properties, such

as, lifting properties, retract arguments, etc.

Definition 1.1.1. Let C be a category. We denote by Map C the category whose

objects are morphisms of C and whose morphisms are commutative squares. The

domain and codomain functors

dom , codom : Map C → C ,

assign a morphism in C , respectively, to its domain and codomain, that is,

dom (X
f→ Y ) = X , codom (X

f→ Y ) = Y .

If a commutative square

X

f

��

ϕ // X ′

f ′

��
Y

ψ
// Y ′

1



is a morphism in Map C from f : X → Y to f ′ : X ′ → Y ′, then we set

dom


X

f
��

ϕ // X ′

f ′

��
Y

ψ
// Y ′

 := ( X
ϕ // X ′ ) , codom


X

f
��

ϕ // X ′

f ′

��
Y

ψ
// Y ′

 :=( Y
ψ // Y ′ ) .

Definition 1.1.2. A functorial factorization on a category C is a pair (α, β) of functors

α and β from Map C to itself, such that

(1) dom ◦ α = dom ,

(2) codom ◦ β = codom ,

(3) codom ◦ α = dom ◦ β, and

(4) β ◦ α = idMap C .

In other terms, for every morphism f in C we have a commutative triangle,

domα(f) = dom f
f //

α(f)

''OOOOOOOOOOOOOOOOOOOOOO
codomβ(f) = codom f

codomα(f) = domβ(f)

β(f)

66mmmmmmmmmmmmmmmmmmmmmmm

or simply, α(f) and β(f) are composable morphisms, and f = β(f) ◦ α(f).

Definition 1.1.3. We say that a morphism f in C is a retract of a morphism g in C

if f is a retract of g as objects in Map C , in other words, there exists a commutative

diagram of the form

A //

f

��

C //

g

��

A

f

��
B // D // B

where the horizontal composites are identities.

Example 1.1.4. If p is the retraction of a morphism s : A → B in a category [26, p.

19], then the diagram

A
s //

s

��

B
p //

s◦p

��

A

s

��
B B B

displays s as a retract of s ◦ p.

2



Definition 1.1.5. Suppose that i : A → B and p : X → Y are two morphisms in C .

We say that i has the left lifting property with respect to p, or p has the right lifting

property with respect to i, if for any commutative square,

A //

i

��

X

p

��
B // Y

there exists a morphism ` : B → X, called lifting, such that the following diagram

A //

i

��

X

p

��
B

`

??~~~~~~~~~~~~~~
// Y

is commutative.

Definition 1.1.6. Let I be a class of morphism in a category C . A morphism is called:

(1) I-injective, if it has the right lifting property with respect to every morphism in

I. We denote the class of I-injective morphisms by I-inj.

(2) I-projective, if it has the left lifting property with respect to every morphism in

I. We denote the class of I-projective morphisms by I-proj.

(3) I-cofibration, if it is a morphism in (I-inj)-proj. We denote the class of I-

cofibrations by I-cof.

Remark 1.1.7. From the definition it follows that for any two classes of morphisms I

and J , one has the following:

(i) I ⊂ I-cof.

(ii) If I ⊂ J , then we have two inclusions I-inj ⊃ J-inj and I-proj ⊃ J-proj. Hence,

one has I-cof ⊂ J-cof.

Definition 1.1.8. A model category is a category C provided of a model structure,

that is, three classes of morphisms in C :

(1) a class of weak equivalences,

(2) a class of fibrations,

(3) a class of cofibrations,

3



and two functorial factorizations (α, β), (γ, δ) satisfying the following axioms:

(MC1) (limits) C is complete and cocomplete.

(MC2) (2-out-of-3) If f and g are two composable morphisms in C such that two of f, g

and g ◦ f are weak equivalences, then so is the third.

(MC3) (retracts) If f and g are morphisms in C such that f is a retract of g and g is a

weak equivalence, cofibration or fibration, then so is f .

(MC4) (lifting) Trivial cofibrations have the left lifting property respect to fibrations,

and trivial fibrations have the right lifting property respect to cofibrations.

(MC5) (factorization) Every morphism f in C has two factorizations:

f = β(f) ◦ α(f) ,

f = δ(f) ◦ γ(f) ,

where

(i) α(f) is a cofibration,

(ii) β(f) is a trivial fibration,

and

(iii) γ(f) is a trivial cofibration,

(iv) δ(f) is a fibration.

Remark 1.1.9. A category may have more than one model structure.

Remark 1.1.10. A model category has an initial and a terminal object, because it

is complete and cocomplete. In fact, its initial object (resp. terminal object) is the

colimit (resp. limit) of the empty diagram.

Example 1.1.11. The Quillen model structure on the category of simplicial sets

∆opSets has the following structure:

(1) a cofibration is a monomorphism,

(2) a weak equivalence is a weak homotopy equivalence, i.e. a morphism f such that

its geometric realization |f | induces bijections of homotopy groups, see [15, p.

352].

(3) a fibration is a Kan fibration, i.e. a morphism that has the right lifting property

with respect to all horns Λr[n] ↪→ ∆[n] for n > 0 and 0 ≤ r ≤ n.

4



Example 1.1.12. The category of simplicial (pre-)sheaves has various model struc-

tures, see Section 2.1.2.

Example 1.1.13. The category of symmetric spectra has a projective model structure

(see Theorem 1.4.30) and a stable model structure (see page 62).

Terminology. The initial object of a category will be denoted by ∅ (sometimes by 0)

and the terminal object by ∗ (sometimes by pt or by 1) .

Definition 1.1.14. Let C be a model category and let X be an object of C . We say

that X is cofibrant if the morphism ∅ → X is a cofibration, and X is fibrant if the

morphism X → ∗ is a fibration.

Lemma 1.1.15 (Ken Brown’s lemma). Suppose that C is a model category and D

is a category with a subcategory of weak equivalences satisfying the 2-out-of-3 axiom.

If F : C → D is a functor which takes trivial cofibration between cofibrant objects to

weak equivalences, then F takes all weak equivalences between cofibrant objects to weak

equivalences.

Proof. See [18, Lemma 1.1.12]

Pointed model categories

Definition 1.1.16. A category with an initial ∅ and terminal object ∗ is called pointed

if the canonical morphism ∅ → ∗ is an isomorphism.

Example 1.1.17. Additive categories are pointed, the zero object is both an initial

and a terminal object.

Let C be a category. We denote

C∗ :=∗ ↓ C

the category whose objects are morphisms ∗ v→ X of C . As in topology, it is sometimes

denoted by (X, v) an element of C∗, and call it object X with base point v. From the

definition, it follows that the category C∗ is pointed.

Suppose that C is a category with a terminal object ∗. For every object X of a

category C , we set

X+ :=X q ∗ .

We denote by C+ the full subcategory of C∗ generated by objects of the form X+ for

all objects X in C . Let us denote by

(−)+ : C → C∗

5



the composition of the functor C → C+, given by X 7→ X+, with the full embedding

C+ ↪→ C∗. The functor (−)+ is left adjoint to the forgetful functor U : C∗ → C ,

(−)+ : C
//
C∗ : Uoo (1.1)

If C is a pointed category, then the functors (−)+ and U define an equivalence of

categories between C and C∗.

Lemma 1.1.18. Let C be a model category. Then, the model structure on C induces

a model structure on C∗, where a morphism f in C∗ is a cofibration (fibration, weak

equivalence) if and only if U(f) is a cofibration (fibration, weak equivalence) in C .

Proof. Notice that axioms (MC1), (MC2) and (MC3) for C∗ follow immediately from

the corresponding axioms of C . To prove the lifting axiom (MC4), we give a commu-

tative square in C∗

(A, a) //

i

��

(X,x)

p

��
(B, b) // (Y, y)

(1.2)

where i is a trivial cofibration and p is a fibration (the other case is similar). By the

axiom (MC4) on C , the square

A //

U(i)

��

X

U(p)

��
B // Y

has a lifting, say ` : B → X. We observe that, by diagram chasing, we have ` ◦ b = x.

Hence, ` induces a morphism of pointed objects (B, b) → (X,x) which is a lifting

of the square (1.2). Finally, let us prove the factorization axiom (MC5). Let (α, β)

be a functorial factorization of C . We define a functorial factorization (α∗, β∗) of

C∗ as follows. For a morphism f : (X,x) → (Y, y) in C∗, we define α∗(f) to be the

commutative triangle

∗

x

����������������

α(U(f))◦x

$$JJJJJJJJJJJJJJJJJJ

X
α(U(f))

// codomα(U(f))

6



and we define β∗(f) to be the commutative triangle

∗

α(U(f))◦x

zztttttttttttttttttt

y

��??????????????

codomα(U(f))
β(U(f))

// Y

Since β(U(f)) ◦ α(U(f)) = U(f) for every morphism f in C∗, the pair (α∗, β∗) is a

functorial factorization of C∗.

1.1.2 Cellular complexes

We start this section recalling some basics on ordered sets, ordinals and cardinals.

Definition 1.1.19.

(1) A preorder on a set is a binary relation that is reflexive and transitive. A pre-

ordered set is a set provided of a preorder.

(2) A partial order on a set is a binary relation that is reflexive, antisymmetric and

transitive. An ordered set is a set provided of a partial order.

(3) A partially ordered set S, say with a order ≤, is called totally ordered, if every

pair of elements (a, b) ∈ S × S is comparable, that is, a ≤ b or b ≤ a.

(4) A totally ordered set S is called well-ordered, if S has a minimum element, that

is, an element b ∈ S such that b ≤ a for all a ∈ S.

Definition 1.1.20. A preordered set S is a directed set if every pair of elements has

an upper bound, i.e. for every pair of elements a, b ∈ S there exists an element c such

that a ≤ c and b ≤ c.

Example 1.1.21. Totally ordered sets are directed sets, but partially ordered sets are

not necessarily directed sets.

Theorem 1.1.22 (Zermelo’s Well-Ordering Theorem). Every nonempty set can be

well-ordered.

Proof. This theorem is equivalent to the Axiom of Choice. The reader may consult [24,

Th. 5.1].

Definition 1.1.23. A set A is called transitive, if every element of A is a subset of A.

Example 1.1.24.

(1) By vacuity, ∅ is transitive.
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(2) The sets {∅}, {∅, {∅}} are transitive.

(3) The set {{∅}} is not transitive, because {∅} is an element of {{∅}} but it is not

a subset of {{∅}}.

Definition 1.1.25. A set is called ordinal, if it is transitive and well-ordered by the

set-membership order ∈.

Example 1.1.26.

(1) 0 :=∅ is an ordinal.

(2) The sets 1 :={∅} and 2:={∅, {∅}} are ordinals.

(3) If α is an ordinal, then α+ 1:=α ∪ {α} is an ordinal.

(4) The set
{
∅, {{∅}}, {∅, {∅}}

}
is transitive but it is not an ordinal, because {{∅}}

and {∅, {∅}} are not comparable by ∈.

Definition 1.1.27. For any two ordinals α and β, we denote α < β to mean that

α ∈ β, and by α ≤ β to mean that α ∈ β or α = β.

Proposition 1.1.28. We have the following statements:

(a) Every ordinal α is equal to the set of ordinals β such that β < α.

(b) If α is an ordinal and β is a set such that β ∈ α, then β is an ordinal.

(c) If α 6= β are two ordinals such that α ⊂ β, then α ∈ β.

(d) Let α and β be two ordinals. If f : α → β is an isomorphism of ordered sets, then

α = β and f = id.

(e) Let α and β be two ordinals. Then exactly one of the following cases holds: α = β,

α < β or β < α.

(f) If A is a set of ordinals, then the union of the elements of A, usually denoted by

supA or by
⋃
A, is an ordinal.

Proof. See [24].

Definition 1.1.29. By the Zermelo’s Well-Ordering Theorem 1.1.22, every set is in

bijection with a certain ordinal. The cardinal of a set A is the smallest ordinal that is

bijective to A. The cardinal of A is usually denoted by |A|.

Definition 1.1.30. An ordinal κ is called cardinal, if |κ| = κ; in other words, if κ is

not bijective to any ordinal strictly less than κ.

Remark 1.1.31. Notice that there is no redundancy in Definition 1.1.29 and Definition

1.1.30.

8



Example 1.1.32.

(1) Finite ordinals are cardinals.

(2) The ordinal ω is a cardinal, it is usually denote by ℵ0.

(3) The ordinal ω + 1 is not a cardinal. Indeed, we have ω + 1 = ω ∪ {ω}, hence the

function f : ω ∪ {ω} → ω given by

f(β) =

 β + 1 , if β < ω ,

0 , if β = ω ,

is a bijection, but ω is strictly less than ω + 1.

Definition 1.1.33. Let κ be a cardinal. An ordinal λ is κ-filtered, if:

(1) it is a limit ordinal, and

(2) it satisfies the following property: if A is a set such that A ⊂ λ and |A| ≤ κ, then

supA < λ.

Remark 1.1.34. The condition (2) in the previous definition implies that a κ-filtered

ordinal is necessarily a limit ordinal.

Definition 1.1.35. An infinite cardinal κ is called regular, if it satisfies the following

axiom: for every set A such that |A| < κ and for every family {Sa}a∈A such that

|Sa| < κ, one has |
⋃
a∈A Sa| < κ.

Example 1.1.36. If κ is a finite cardinal, then the countable ordinal ω is κ-filtered.

Proposition 1.1.37. If κ is infinite and successor cardinal, then κ is regular.

Proof. See [17, Proposition 10.1.14].

Definition 1.1.38. Suppose C is a cocomplete category and λ is an ordinal. A λ-

sequence in C is a colimit-preserving functor X : λ → C in the following sense: for all

limit ordinal γ < λ, the induced morphism

colim β<γXβ → Xγ

is an isomorphism. The morphism X0 → colim β<λXβ is called transfinite composition

of the λ-sequence X.

Definition 1.1.39. Let I a class of morphisms of a cocomplete category C and let κ

be a cardinal.
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(1) An object A of C is called κ-small relative to I, if for all κ-filtered ordinals λ and

λ-sequences

X0 → X1 → · · · → Xβ → · · · ,

such that every morphism Xβ → Xβ+1 is in I for β+1 < λ, the induced morphism

of sets

colim β<λHomC (A,Xβ)→ HomC (A, colim β<λXβ)

is bijective.

(2) An object A ∈ C is called small relative to I if it is κ-small relative to I for some

cardinal κ.

(3) An object A ∈ C is called small, if it is small relative to the class to all morphisms

of C .

Definition 1.1.40. Let C be a cocomplete category and let I be a class of morphisms

of C .

(1) An object A of C is called finite relative to I, if there is a finite cardinal κ such

that A is κ-small relative to I.

(2) An object A of C is called finite, if it is finite relative to the class of all morphisms

of C .

Example 1.1.41.

(i) Every set is small in the category of sets.

(ii) In the category of sets, a set is finite (in the sense of Definition 1.1.40) if and only

if it is a finite set, i.e. a set with finitely many elements.

(iii) In the category of topological spaces Top, a compact topological space may not

be small: the space X = {0, 1} with the trivial topology is compact but not small

in Top. This counterexample was given by Don Stanley (see Errata of [18]).

Definition 1.1.42. Let I be a set of morphisms in a cocomplete category C . A

morphism f in C is a relative I-cell complex if there exists an ordinal λ and a λ-

sequence X : λ→ C such that f is the transfinite composition of X and such that, for

each ordinal β with β + 1 < λ, there is a pushout square

Cβ //

gβ

��

Xβ

��
Dβ

// Xβ+1
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such that gβ ∈ I. The class of relative I-cell complexes is denoted by I-cell. We say

that an object A ∈ C is an I-cell complex if the morphism 0 → A is a relative I-cell

complex.

Lemma 1.1.43. Suppose that I is a class of morphisms in a cocomplete category C .

We have the following assertions:

(a) I-inj and I-proj are closed under compositions.

(b) I-inj and I-proj are closed under retracts.

(c) I-proj is closed under pushouts and I-inj is closed under pullbacks.

(d) I-proj is closed under transfinite compositions.

(e) I-cell ⊂ I-cof.

(f) I-cell is closed under transfinite compositions.

(g) Any pushout of coproducts of morphisms of I is in I-cell.

Proof. Each statement follows from the definitions, see [17] or in [18].

Proposition 1.1.44. Let C be a category cocomplete and let I be a set of morphisms

in C . Let κ be a regular cardinal such that the domains of morphisms of I are κ-small-

relative to I-cell. Then there exists a functorial factorization (γ, δ) on C such that for

every morphism f in C , we can write

f = δ(f) ◦ γ(f)

where γ(f) is a transfinite composition of a κ-sequence of pushouts of coproducts of

elements in I, and δ(f) in I-inj.

Proof. The transfinite induction allows one to construct a suitable functorial factor-

ization, and the regularity property on the cardinal κ permits to obtain the required

properties of the factorization, see [17].

We following definition is due to D.M. Kan.

Definition 1.1.45. If C is a category and I is a set of morphisms in C , we say that I

permits the small object argument, if the domain of every element of I is small relative

to I-cell.

Theorem 1.1.46 (The small object argument). Let C be a category cocomplete and

let I be a set of morphisms in C . Suppose that I permits the small object argument.

Then there exists a functorial factorization (γ, δ) on C such that for every morphism

f in C , we can write

f = δ(f) ◦ γ(f)

with γ(f) in I-cell and δ(f) in I-inj.

11



Proof. By hypothesis, every object in dom (I) is small-relative to I-cell, then for every

A in dom (I), there is a cardinal κA such that A is κA-small relative to I-cell. We

consider the cardinal,

κ :=
⋃

A∈dom (I)

κA .

Since κA < κ for every A in dom (I), every object A in dom (I) is κ-small relative to

I-cell. Hence, by Proposition 1.1.44, there exists a functorial factorization (γ, δ) on C

such that for every morphism f in C , we can write

f = δ(f) ◦ γ(f)

with γ(f) is a transfinite composition of a κ-sequence of pushouts of coproducts of

elements in I, and δ(f) in I-inj. In particular, γ(f) is in I-cell, this proves the theorem.

Corollary 1.1.47. Let I be a set of morphism in a cocomplete category C . Suppose

that I permits the small object argument. Then every morphism f : A → B in I-cof,

there is a morphism g : A → C in I-cell such that f is a retract of g by a morphism

which fixes A, that is, there is commutative diagram

A

f

��

A

g

��

A

f

��
B // C // B

where the horizontal composites are the identities.

Proof. See [18, Corollary 2.1.15].

1.1.3 Cofibrantly generated model categories

In practice, most of the interesting model categories have a class of cofibrations and a

class of trivial cofibrations that are generated by sets of morphisms in the sense of the

following definition.

Definition 1.1.48. A model category C is called cofibrantly generated, if there are two

sets I and J of morphisms of C such that we have the following axioms:

(1) I permit the small object argument.

(2) J permit the small object argument.

(3) The class of fibrations in C is J-inj.
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(4) The class of trivial fibrations in C is I-inj.

The set I is called set of generating cofibrations and the set J is called set of generating

trivial cofibrations of C .

Example 1.1.49. In the category of topological spaces Top, the sets

I =
{
Sn−1 ↪→ Dn | n ≥ 0

}
,

J =
{

[0, 1]n−1 × {0} ↪→ [0, 1]n | n ≥ 1
}

generate a model structure, see [32], [18] or [8]. Here, Sn−1 ↪→ Dn is the inclusion of

the (n− 1)-dimensional sphere into the n-dimensional unit disc. In ∆opSets, the sets

I = {∂∆[n] ↪→ ∆[n] |n ≥ 0} ,

J = {Λr[n] ↪→ ∆[n] |n > 0, 0 ≤ r ≤ n}

generate the Quillen model structure on the category of simplicial sets, see [32], [18],

or [11]

Proposition 1.1.50. Suppose C is a cofibrantly generated model category with gener-

ating cofibrations I and generating trivial cofibrations J . Then, the following conditions

are satisfied:

(a) The cofibrations form the class I-cof.

(b) Every cofibration is a retract of a relative I-cell complex.

(c) The domains of morphisms in I are small relative to the cofibrations.

(d) The trivial cofibrations form the class J-cof.

(e) Every trivial cofibration is a retract of a relative J-cell complex.

(f) The domains of morphisms in J are small relative to the trivial cofibrations.

Proof. See [17] or [18].

The following theorem is known as the “recognition theorem”, which gives us a

necessary and sufficient condition on a complete and cocomplete category to be a cofi-

brantly generated model category.

Theorem 1.1.51 (Recognition theorem). Suppose C is a complete and cocomplete

category and suppose that W is a class of morphisms in C and I, J are two sets of

morphisms of C . Then there exists a cofibrantly generated model structure on C , with

I as the set of generating cofibrations, J as the set of generating trivial cofibrations and

W as the class of weak equivalences, if and only if the following conditions are satisfied:
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(1) The class W has the 2-out-of-3 property (MC2) and it is closed under retracts

(MC3).

(2) I permit the small object argument.

(3) J permit the small object argument.

(4) J-cell ⊂W ∩ I-cof.

(5) I-inj ⊂W ∩ J-inj.

(6) Either W ∩ I-cof ⊂ J-cof or W ∩ J-inj ⊂ I-inj.

Proof. See [18, Theorem 2.1.19].

The following lemma, due to A. Joyal, has sometimes a practical use, as it implies

the lifting axiom (MC4) of Definition 1.1.8 in a category satisfying some axioms of

lifting properties and functorial factorization .

Lemma 1.1.52 (Joyal’s trick). Suppose that C is a category with a class of weak

equivalences, a class of fibrations and a class of cofibrations satisfying axioms (MC1)

and (MC2), and in addition, suppose that one has the following properties:

(1) The cofibrations are stable by compositions and pushouts.

(2) The fibrations have the right lifting property with respect to trivial cofibration.

(3) All morphism f can be functorially factored as f = p ◦ i, with p a trivial fibration

and i a cofibration.

Then, the axiom (MC4) is also satisfied for C .

Proof. See [21].

1.1.4 Homotopy categories

In topology, the classification of topological spaces up to homeomorphisms is considered

as a difficult problem. However, the notion of homotopy provides a coarser but a clearer

classification of such spaces. The homotopy category of a model category is the category

resulting by inverting the weak equivalences. A generalization to model categories of

the celebrated Whitehead’s theorem asserts that a weak equivalence between fibrant-

cofibrant objects is a homotopy equivalence.

Definition 1.1.53. Let C be a category and let W be a class of morphisms in C .

A localization of C with respect to W is a category C [W−1] together with a functor

γ : C → C [W−1] such that
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(1) for every f ∈ W, the morphism γ(f) is an isomorphism, and

(2) if D is another category and ξ : C → D is a functor such that ξ(f) is an isomor-

phism for every f ∈ W, then there is a unique functor δ : C [W−1]→ D such that

we have a commutative diagram

C
ξ //

γ ##GGGGGGGGG D

C [W−1]

δ

;;

Theorem 1.1.54. If C is a model category with a class of weak equivalences W, then

the localization of C with respect to W exists.

Proof. See [17, Theorem 8.3.5].

Definition 1.1.55. If C is a model category with a class of weak equivalences W. We

denote C [W−1] by Ho C and call it the homotopy category of C .

Let C be a a model category. We denote by Cc (resp. Cf , Ccf ) the full subcategory

of cofibrant (resp. fibrant, cofibrant and fibrant) objects of C . A morphism f : X → Y

in Cc (resp. Cf , Ccf ) is a weak equivalence if it is a weak equivalence in C . We shall

construct two natural functors

Q,R : C → C ,

called cofibrant (resp. fibrant) replacement functor. They are constructed as follows.

For any X object of C , we consider the morphism ∅ → X → ∗. Since C is a model

category, we have two functorial factorizations (α, β) and (γ, δ), see 1.1.2. Hence,

defining

Q(X) :=codomα(∅ → X)

and

R(X) :=codom γ(X → ∗) ,

we obtain a sequence

∅
α(∅→X) // Q(X)

β(∅→X) // X
γ(X→∗) // R(X)

δ(X→∗) // ∗ ,

where

- α(∅ → X) is a cofibration,

- β(∅ → X) is a trivial fibration,

- γ(X → ∗) is a trivial cofibration, and

- δ(X → ∗) is a fibration.
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In particular, Q(X) is cofibrant and R(X) is fibrant. If f : X → Y is a morphism in

C , we have a commutative diagram

∅ // Q(X)

��

// X

f

��

// R(X)

��

// ∗

∅ // Q(Y ) // Y // R(Y ) // ∗

because α, β, γ and δ are functors Map C → Map C . Moreover, by functoriality, we get

two functors

Q : C → Cc ,

R : C → Cf ,

called cofibrant replacement and fibrant replacement respectively. We shall denote by

ic : Cc → C , and by if : Cf → C , the corresponding inclusion functors. Notice that the

morphisms Q(X)→ X, for X in C , induce two natural transformations

Q ◦ ic ⇒ idCc , ic ◦Q⇒ idC ,

and the morphisms X → R(X), for X in C , induce two natural transformations

idCf ⇒ R ◦ if , idC ⇒ if ◦R .

Lemma 1.1.56. Suppose C is a model category. The replacement functors Q : C → Cc

and R : C → Cf preserve weak equivalences.

Proof. For any morphism f : X → Y in C , we have a commutative diagram

Q(X)

Q(f)

��

β(∅→X) // X

f

��

γ(X→∗) // R(X)

R(f)

��
Q(Y )

β(∅→X)
// Y

γ(Y→∗)
// R(Y )

where β(∅ → X), β(∅ → Y ) are trivial fibrations and γ(X → ∗), γ(Y → ∗) are trivial

cofibrations. Now, if f is a weak equivalence, by 2-out-of-3 axiom, we deduce from the

above diagram that Q(f) and R(f) are weak equivalences.

Proposition 1.1.57. Suppose C is a model category. Then the inclusion functors ic

and if induce equivalences of categories

Ho Ccf → Ho Cc → Ho C

and

Ho Cfc → Ho Cf → Ho C .
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Proof. Note that is it enough to show that Ho Cc → Ho C and Ho Cf → Ho C are

equivalences of categories. Let us prove that the first one is an equivalence of categories.

By definition, the inclusion ic : Cc → C preserves weak equivalences, so it induces a

functor

Ho ic : Ho Cc → Ho C .

On the other hand, Lemma 1.1.56 says that Q preserves weak equivalences, so it induces

a functor

HoQ : Ho C → Ho Cc ,

moreover, the natural transformations

Q ◦ ic ⇒ idCc , ic ◦Q⇒ idC ,

induce two natural isomorphisms

HoQ ◦Ho ic ⇒ idHo Cc , Ho ic ◦HoQ⇒ idHo C .

This proves that the functor Ho ic : Cc → Ho C is an equivalence of categories. Similarly

we prove that Ho Cf → Ho C is an equivalence of categories.

Definition 1.1.58. Suppose C is a model category.

(1) For an object X ∈ C , the fold morphism idX q idX : X qX → X is defined from

the cocartesian diagram

∅ //

��

X

�� idX

��

X //

idX
--

X qX

idX
∐

idX

EEEEEEE

""EEEEEEE

X

A cylinder object for X is a factorization of the fold morphism idX
∐

idX ,

X qX i0qi1−→ Cyl(X)
p−→ X ,

where i0
∐
i1 is a cofibration and p is a weak equivalence.
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(2) For an object Y ∈ C , the diagonal morphism idY × idY : Y → Y × Y is defined

from the cartesian diagram

Y

idY ×idY

DDDDDDD

""DDDDDDD

idY

  

idY

##
Y × Y //

��

Y

��
Y // ∗

A path object for Y is a factorization axiom of the diagonal morphism idY × idY

is factored as

Y
s−→ Path(Y )

p0×p1−→ Y × Y ,

where s is a weak equivalence and p0 × p1 is a fibration.

Remark 1.1.59. In a model category C , by the factorization axiom, cylinder and path

objects always exist.

In the next paragraphs we give the definition of left and right homotopy.

Definition 1.1.60. Suppose C is a model category and let f, g : X → Y be two mor-

phisms in C .

(1) A left homotopy from f to g is a pair (C,H), where C is a cylinder object

C : X qX i0
∐
i1−→ Cyl(X)

p−→ X

for X, and H is a morphism

H : Cyl(X)→ Y ,

such that H ◦ i0 = f and H ◦ i1 = g, as shown in the following diagram

∅ //

��

X

��
i0

��

f

��

X //

i1

,,

g

,,

X qX

idX
∐

idX

HHHHHHH

$$HHHHHHH

Cyl(X)

H
DDDDDDD

""DDDDDDD

Y
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We say that f is a left homotopic to g if there exists a left homotopy from f to

g, it is denoted by f
l' g.

(2) A right homotopy from f to g is a pair (P,K) a path object

P : Y
s−→ Path(Y )

p0×p1−→ Y × Y

for Y , and a K is a morphism

K : X → Path(Y ) ,

such that p0 ◦K = f and p1 ◦K = g, as shown in the following diagram

X

K
FFFFFFF

""FFFFFFF
f

��g

&&

Path(Y )

p0×p1

HHHHHHHH

$$HHHHHHHH

p1

""

p0

$$
Y × Y //

��

Y

��
Y // ∗

We say that f is a right homotopic to g if there exists a right homotopy from f

to g, it is denoted by f
r' g.

(3) We say that f is homotopic to g, if f is both left homotopic and right homotopic

to g, it is denoted by f ' g.

Theorem 1.1.61 (Whitehead’s theorem). Let C be a model category and let X,Y be

two fibrant cofibrant objects of C . Then f : X → Y is a weak equivalence if and only if

f is a homotopy equivalence.

Proof. See [17, Theorem 7.5.10] or [18, Theorem 1.2.10].

1.2 Properties

In this section, we shall recall important properties of model categories and homotopy

categories.
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1.2.1 Quillen functors

Definition 1.2.1. Let C ,D be two model categories.

(1) A functor F : C → D is called left Quillen functor, if F is a left adjoint and

preserves cofibrations and trivial cofibrations.

(2) A functor U : C → D is called right Quillen functor, if U is a right adjoint and

preserves fibrations and trivial fibrations.

(3) Suppose that (F,U, ϕ) is an adjunction, where ϕ is an isomorphism of bi-functors

HomD(F (−),−)
∼−→ HomD(−, U(−)) .

The triplet (F,U, ϕ) is called is called Quillen adjunction if F is a left Quillen

functor and U is a right Quillen functor.

Example 1.2.2. Let C be a model category. The adjunction (1.1) induced by the

functor (−)+ : C → C∗ is a Quillen adjunction.

Lemma 1.2.3. Suppose that (F,U, ϕ) : C → D between two model categories C and

D . If F is a left Quillen functor or U is a right Quillen functor, then (F,U, ϕ) is a

Quillen adjunction.

Proof. See [18, Lemma 1.3.4].

Derived functors

In the following definitions we use the notion of left and right Kan extensions. We refer

the reader to [26] for a precise definition of these concepts.

Definition 1.2.4. Let C be a model category, let D be an arbitrary category and let

F : C → D be a functor.

(1) The left derived functor of F is the right Kan extension LF : Ho (C ) → D of F

along the localization functor γC : C → Ho (C ).

(2) The right derived functor of F is the left Kan extension LF : Ho (C ) → D of F

along the localization functor γC : C → Ho (C ).

Proposition 1.2.5. Let F : C → D be a functor between a model category C and

an arbitrary category D . If F sends trivial cofibrations between cofibrant objects to

isomorphisms, then the left derived functor of F exists.

Proof. See [17, Proposition 8.4.4].
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Definition 1.2.6. Let C and D be two model categories and let F : C → D be a func-

tor. The (total) left derived functor of F is the left derived functor of the composition

C
F→ D

γD→ Ho (D). In other words, the total left derived functor of F is the functor

LF : Ho (C )→ Ho (D) which is the right Kan extension of the composition

C
F−→ D

γD−→ Ho (D)

along γC : C → Ho (C ).

Proposition 1.2.7. Let F : C → D be a functor between two model categories C and

D . If F sends trivial cofibrations between cofibrant objects to weak equivalences, then

the left derived functor of LF : Ho (C )→ Ho (D) exists.

Proof. See [17, Proposition 8.4.8].

Definition 1.2.8. A Quillen adjunction (F,U, ϕ) : C → D is called Quillen equiv-

alence if for all cofibrant object X in C and fibrant object Y in D , a morphism

f ∈ HomD(F (X), Y ) is a weak equivalence in D if and only if ϕ(f) ∈ HomD(X,U(Y ))

is a weak equivalence in C . In other words, if every cofibrant object X in C and fibrant

object Y in D , a morphism f : F (X) → Y is a weak equivalence in D if and only if

ϕ(f) : X → U(Y ) is a weak equivalence in C .

Proposition 1.2.9. Let (F,U, ϕ) : C → D be a Quillen adjunction. The following

statements are equivalent:

(a) (F,U, ϕ) is a Quillen equivalence.

(b) For every cofibrant object X in C , the composite

X
η // (U ◦ F )(X)

(U◦r◦F )(X) // (U ◦R ◦ F )(X) ,

and for every fibrant object Y in D , the composite

(F ◦Q ◦ U)(Y )
(F◦q◦U)(Y ) // (F ◦ U)(Y )

ε // Y .

(c) L(F,U, ϕ) is an adjoint equivalence of categories.

Proof. See [18, Proposition 1.3.13].

Proposition 1.2.10. Let F : C → D be a left Quillen equivalence, and suppose that the

terminal object ∗ of C is cofibrant and F preserves terminal object. Then F∗ : C∗ → D∗

is a Quillen equivalence.

Proof. See [18, Proposition 1.3.17].
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1.2.2 Simplicial model categories

Some model categories can be seen as categories of modules over the category of sim-

plicial sets, such model categories are known as simplicial model categories.

Definition 1.2.11. A category C is a simplicial category, if there is a bifunctor

Map (−,−) : C op × C → ∆opSets ,

called space functor, satisfying the following properties:

(1) For two objects X and Y of C , we have

Map (X,Y )0 = HomC (X,Y ) .

(2) For each object X of C , the functor Map (X,−) : C → ∆opSets has a left adjoint

functor

X ⊗− : ∆opSets→ C ,

which is associative, that is, there is an isomorphism

X ⊗ (K × L)
∼−→ (X ⊗K)⊗ L ,

functorial in X and in K,L ∈ ∆opSets.

(3) For each object Y of C , the functor Map (−, Y ) : C op → ∆opSets has a right

adjoint functor

Y (−) : ∆opSets→ C .

Definition 1.2.12. A simplicial model category C is a model category that is also

simplicial such that

(M7) if i : A → B is a cofibration and p : X → Y is a fibration, then the morphism of

simplicial sets

Map (B,X)
i∗×p∗−→ Map (A,X)×Map (A,X) Map (B, Y )

is a fibration, and it is a trivial fibrations if either i or p is a weak equivalence.

Remark 1.2.13. Let C be a simplicial model category. By adjointness in (2) and (3)

of Definition 1.2.11, we have two isomorphisms

HomC (X ⊗K,Y ) ' Hom∆opSets(K,Map (X,Y )) ' HomC (X,Y K) ,

functorial in X,Y ∈ C and K ∈ ∆opSets. Notice that on the second isomorphism,

to observe that, the functor Map (−, Y ) : C op → ∆opSets can be viewed as a functor

C → (∆opSets)op. The above isomorphisms are known as axiom M6. The axiom (M7)

is equivalent to say that the functor Map (X,−) of (2) is a left Quillen functor and the

functor Map (−, Y ) of (3) is a right Quillen functor.

22



Some properties

Definition 1.2.14. Let C be a cocomplete category. For every object X of ∆opC and

every simplicial set K, we define X ⊗K to be the functor X ⊗K : ∆op → C given by

[n] 7→
∐
Kn

Xn

where
∐

denotes the coproduct in C . If θ : [m] → [n] is a morphism in ∆, then θ

induces a morphism θ∗ : (X ⊗K)n → (X ⊗K)m given by the following composite∐
Kn

Xn

∐
X θ∗

−→
∐
Kn

Xm −→
∐
Km

Xm

where the first arrow is the morphism induced by Xθ
∗ : Xn → Xm and the second is

induced by Kθ
∗ : Kn → Km. We have a bi-functor

−⊗− : ∆opC ×∆opSets→ ∆opC

defined by (X,K) 7→ X ⊗K.

Definition 1.2.15. For two objects X and Y of ∆opC , we define a simplicial set

Map⊗(X,Y ) to be the contravariant functor

[n] 7→ Hom∆opC (X ⊗∆[n], Y ) ,

where ⊗ is defined in Definition 1.2.14.

Theorem 1.2.16. Let C be a complete and cocomplete category. Then ∆opC together

with the bi-functor − ⊗ − and Map⊗(−,−) (see Definition 1.2.14 and 1.2.15) is a

simplicial category.

Proof. See [11].

Lemma 1.2.17 (Cube lemma). Let C be a model category. Suppose we have commu-
tative cube of cofibrant objects

A1

f1

��

a1 //

φA

  AAAAAAAAAAAAA X1

g1

��

φX

  AAAAAAAAAAAAA

A2

f2

��

a2
// X2

g2

��

B1
b1

//

φB

  AAAAAAAAAAAAA Y1

φY

  AAAAAAAAAAAAA

B2
b2 // Y2

(1.3)
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where the faces on the back and front are cocartesian squares and suppose a1, a2 are

monomorphisms. If φA, φB and φX are weak equivalences, then φY is a weak equiva-

lence too.

Proof. Let B be the category {a, b, c} with three objects and non identity morphisms

a→ b and a→ c,

c← a→ b .

We choose a function d : obj (B) → N such that d(a) < d(b) and d(a) > d(c), so that

B becomes a Reedy category with B+ = {a, b} and B− = {a, c}. The category C B is

provided with the Reedy model structure (see [18]). We recall that the constant functor

R : C → C B is the right adjoint functor of the colimit functor

colim : C B → C .

We claim that colim is a left Quillen functor. By Lemma 1.2.3, it is enough to prove that

R is a right Quillen functor. Indeed, observe that R preserves weak equivalences. Notice

that R also preserves fibrations, because a morphism from a diagram C ← A→ B into

a diagram C ′ ← A′ → B′ is a fibration in C B if and only if B → B′, C → C ′ and

A→ A′ ×C′ C are fibrations in C . Hence, we deduce that R is a right Quillen functor.

Now, a cofibrant object in C B has the form

C ← A
f→ B ,

where A,B and C are cofibrant objects in C , and f is a cofibration. By hypothesis we
have a diagram

A1

f1

��

a1 //

φA

  AAAAAAAAAAAAA X1

φX

  AAAAAAAAAAAAA

A2

f2

��

a2
// X2

B1

φB

  AAAAAAAAAAAAA

B2

(1.4)

where a1, a2 are monomorphisms and φA, φB, φX are weak equivalences. Notice that

this diagram is a morphism from B1 ← A1
a1→ X1 to B2 ← A2

a2→ X2, thus the triplet

(φB, φA, φX) defines a weak equivalence between cofibrant objects in C B. Observe that

φY is the colimit of (φB, φA, φX), see diagram (1.4). The Ken Brown’s lemma allows

us to deduce that φY is a weak equivalence.
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Theorem 1.2.18. Let C be a model category. Then the total left derived functors of

−⊗− : C ×∆opSets→ C

and

Hom(−,−) : ∆opSets× C op → C op

exist.

Proof. See [18].

Definition 1.2.19. We denote by

−⊗L − : Ho (C )×Ho (∆opSets)→ Ho (C )

the total left derived functor of −⊗− : C ×∆opSets→ C and by

RHom(−,−) : Ho (C )×Ho (∆opSets)→ Ho (C )

the total left derived functor of −⊗− : C ×∆opSets→ C .

1.2.3 Homotopy colimits and limits

If C is a cofibrantly generated model category and if B is a small category, then the

category of functors C B has a projective model structure, i.e. a weak equivalence is an

objectwise weak equivalence and a fibration is an objectwise fibration, see [17, Theorem

11.6.1]. In general, the functors

colim
B

: C B → C , lim
B

: C B → C ,

do not necessarily send objectwise weak equivalence in C B to weak equivalences in C .

However, their total derived functor

Lcolim
B

: Ho (C B)→ Ho (C ) , R lim
B

: Ho (C B)→ Ho (C ) ,

exist. More precisely, we have the following:

Proposition 1.2.20. Let C be a cofibrantly generated model category and let B be a

small category. Then, the adjoint functors

colim
B

: C B � C : Const , Const : C B � C : lim
B
,

induce adjoint pairs of total derived functors

Lcolim
B

: Ho (C B) � Ho (C ) : RConst , LConst : Ho (C B) � Ho (C ) : R lim
B
.

Proof. See [17].

25



Definition 1.2.21. Let F : B → C be a functor. The homotopy colimit of F , denoted

by HocolimF , is the object (Lcolim
B

)(F ) of Ho (C ).

Let C and B as before, and let QB be a cofibrant replacement of C B. We write

hocolimB :=colim B ◦QB : C B −→ C .

Notice that for any functor F : B → C , we have a canonical morphism

hocolimBF → colim BF . (1.5)

This morphism do not need to be an isomorphism, however if F is cofibrant in C B,

then the above morphism is a weak equivalence in C , see [17, Theorem 11.6.8].

Borel construction

Definition 1.2.22 (Simplicial bar construction). Let X and Y be a left and a right

G-set respectively. The simplicial bar construction of X and Y is a simplicial set

B(X,G, Y ) such that it has the Cartesian product X×Gn×Y as the its of n-simplices

for n ∈ N, where G0 is the trivial group {e}. Writing an element of X ×Gn× Y in the

form (x; g1, . . . , gn; y), the face and degeneracy morphisms are given by the formulae

di(x; g1, . . . , gn; y) =


(x · g1; g2, . . . , gn; y) , if i = 0 ,

(x · g1; g2, . . . , gi−1, gi · gi+1, gi+2, . . . , gn; y) , if 0 < i < n ,

(x; g1, . . . , gn−1; gn · y) , if i = n ,

si(x; g1, . . . , gn; y) = (x; g1, . . . , gi, e, gi+1, . . . , gn; y).

(1.6)

Definition 1.2.23. For a group G, we define two simplicial sets

BG :=B(∗, G, ∗) and EG :=B(∗, G,G) ,

where ∗ is the singleton seen as G-set. The simplicial set BG is the simplicial classifying

space of G and is the G-universal principal bundle.

The set of n-simplices (EG)n of EG is the nth fold product Gn+1 and the group G

acts on it by the action of G on its diagonal. The simplicial set EG is contractible, see

[33, Example 4.5.5].

Let C be a pointed simplicial cofibrantly generated model category. Let us take B
of the previous paragraphs to be a group G seen as a category, and let us consider the

projective model structure on CG. In this case, the cofibrant replacement functor has

the shape

QG = (EG)+ ∧ − : CG → CG .
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For every G-object X in C , we have

hocolimG(X) = (EG+ ∧X)/G .

As in (1.5), one has a canonical morphism

hocolimG(X)→ colimG(X) = X/G ,

induced by the morphism EG+ ∧X → X which results by mapping EG to ∗.

Definition 1.2.24. If C is, in addition, a symmetric monoidal model category, then

for any object X of C we define the nth fold homotopy symmetric power of X as

Symn
h(X) :=hocolimΣn(X∧n) ,

where Σn acts on X∧n by permuting factors.

We get an endofunctor Symn
h : C → C sending an object X of C to Symn

h(X).

Homotopy cocartesian and cartesian diagrams

Let C be a left proper model category (see [17, Definition 13.1.1]). A commutative

diagram

A

f

��

// X

��
B // Y

in C , is called homotopy cocartesian, if f has a factorization A
j→ B′

p→ B such that j

cofibration and p is a weak equivalence, and such that the universal morphism

B′ ×A X → Y

is a weak equivalence in C . Let C be a right proper model category (see loc.cit.). A

commutative diagram

A

��

// X

��
B

f
// Y

in C , is called homotopy cartesian, if f has a factorization X
j→ X ′

p→ Y such that j is

a weak equivalence and p is a fibration, and such that the universal morphism

A→ B ×Y X ′

is a weak equivalence in C .
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1.3 Triangulated structures on model categories

The main references for this section are [32] and [18].

1.3.1 Cofibre and fibre sequences

Definition 1.3.1. Let f : X → Y be a morphism in a category C with terminal object

∗.

(1) The cofibre of f : X → Y is defined to be the pushout, if it exists, of the diagram

in C ,

X
f //

��

Y

∗
it will be denoted by Y/X.

(2) The fibre of f is defined to be the pullback, if it exists, of the diagram diagram

in C ,

Y

f

��
∗ // Y

Definition 1.3.2. Let C be a pointed simplicial model category. Let X,Y be two

objects in C and let f : X → Y be a morphism.

(1) The cone of X is the object

cone(X) :=X ∧∆[1]+ ,

where ∆[1]+ = ∆[1] q∆[0]. Notice that the morphism i1 : ∆[0]→ ∆[1], induced

by the 0-face morphism, induces a morphism

X → cone(X) ,

which is a trivial cofibration in C .

(2) The cone of f , denoted by cone(f), is the homotopy colimit of the diagram

X
f //

��

Y

cone(X)
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In the sequel, S1 will denote the usual pointed simplicial circle.

Lemma 1.3.3. Let f : X → Y be a morphism in C , as before. Then the quotient

cone(X)/X is isomorphic to the smash product X ∧S1 , and the quotient cone(f)/Y is

also isomorphic to the smash product X ∧ S1 .

Proof. It follows from the following cocartesian square

X //

��

X ∧∆[1]+

��
∗ // X ∧ S1

On the other hand, the second assertion follows since we have a commutative diagram

X //

f

��

cone(X)

��
Y //

��

cone(f)

��
∗ // X ∧ S1

where both squares are cocartesian.

Definition 1.3.4. Let C be a pointed simplicial model category.

(1) The suspension functor

Σ: Ho C → Ho C

is the functor defined by X 7→ X ∧L S1, see Definition 1.2.19.

(2) Dually, the loop functor

Ω: Ho C → Ho C

is the functor defined by X 7→ RHom∗(S
1, X).

Cofibre sequences in pointed simplicial model categories

In the homotopy category Ho C of a pointed model category C , there is a natural

coaction of ΣA on the cofibre of a cofibration of cofibrant objects A → B, and dually

there is a natural action of ΩB on the fibre of a fibration of fibrant objects E → B.

We shall describe more precisely in the next paragraphs.

In the next paragraphs, C will be a pointed simplicial model category.
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Coaction on ΣA

Let f : A→ B be a cofibration of cofibrant objects in C and let g : B → C the cofibre

of f . For any object X of C , we define a right action

[C,X]× [ΣA,X]→ [C,X]

as follows. Let us fix an object X of C and take two morphisms h : A → X∆[1] and

u : C → X representing elements in [ΣA,X] and [C,X] respectively.

We recall that the morphisms i0, i1 : ∆[0] → ∆[1] induce two trivial fibrations

p0, p1 : X∆[1] → X∆[0] = X, moreover, we have p0 ◦ h = p1 ◦ h which is equal to

the trivial morphism. Since the composition g ◦ f is the trivial morphism, we have a

commutative diagram

A

f

��

h // X∆[1]

p0

��
B u◦g

// X

which has a lifting α : B → X∆[1], as f is a cofibration and p0 a trivial fibration. Since

p1 ◦ α ◦ f = p1 ◦ h is equal to the trivial morphism, we get a solid diagram

A
f //

��

B

�� p1◦α

��

∗ //

--

C

w

��
X

hence there is a unique morphism w : C → X such that w ◦ g = p1 ◦ α. We define a

coaction

[u]� [h] :=[w] .

Action on ΩB

Let p : E → B be a fibration of fibrant objects in C and let i : F → B the fibre of p.

For any object A of C , we define a right action

[A,F ]× [A,ΩB]→ [A,F ]

as follows. Let us fix an object A of C and take two morphisms h : A×∆[1]→ X and

v : A→ F representing elements in [A,ΩB] and [A,F ] respectively. We recall that the
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morphisms i0, i1 : ∆[0]→ ∆[1] induce trivial cofibrations i0, i1 : A→ A×∆[1] such that

h◦ j0 = h◦p1 is a trivial morphism. Since the composition p◦ i is the trivial morphism,

we have a commutative diagram

A

j0

��

i◦v // E

p

��
A×∆[1]

h
// B

which has a lifting β : A × ∆[1] → E, as j0 is a trivial cofibration and p a fibration.

Because p ◦ β ◦ j1 = p ◦ h is equal to the trivial morphism, we get a solid diagram

A

z

��

β◦j1

  

��

F
i //

��

B

p

��
∗ // B

hence there is a unique morphism z : A → F such that w ◦ g = p1 ◦ α. We define an

action

[v]� [h] :=[z] .

Theorem 1.3.5. Let C be a model category as before.

(a) Suppose f : A→ B is a cofibration of cofibrant objects in C with cofibre g : B → C,

and let X be a fibrant of C object. Then the function of sets

[C,X]× [ΣA,X]→ [C,X]

given by ([u], [h]) 7→ [u]� [h] defines a right action of [ΣA,X] on [C,X].

(b) Dually, suppose p : E → B is a fibration of fibrant objects in C with fibre i : F →
E, and let A be a cofibrant object of C . Then the function of sets

[A,F ]× [A,ΩB]→ [A,F ]

given by ([v], [h]) 7→ [v]� [h] defines a right action of [A,ΩB] on [A,F ].

Proof. See [18, Theorem 6.2.1].

Definition 1.3.6. Let C be a pointed model category.
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(1) If f : A → B is a cofibration of cofibrant objects in C with cofibre g : B → C,

then the sequence

A
[f ]→ B

[g]→ C

in Ho C is called special cofibre sequence.

(2) Dually, If p : E → B is a fibration of fibrant objects in C with fibre i : F → E,

then the sequence

F
[i]→ E

[p]→ B

in Ho C is called special fibre sequence.

Proposition 1.3.7. Let C is a pointed model category. Suppose that A
f→ B

g→ C and

A′
f ′→ B′

g′→ C ′ are two special cofibre sequences and there is a commutative square

A
f //

α

��

B

β

��
A′

f ′
// B′

Then the induced morphism γ : C → C ′ is Σα-coequivariant morphism of cogroups.

Proof. See [18, Proposition 6.2.5]

Definition 1.3.8. Let C be a pointed model category.

(1) A cofibre sequence in Ho C is a diagram

X → Y → Z

of morphisms in Ho C , together with a right coaction Z → Z qΣX of ΣX on Z,

such that there is a commutative diagram

X

u

��

// Y

v

��

// Z

w

��
A

f
// B g

// C

where the vertical arrows are isomorphisms in Ho C , the horizontal line at the

bottom is a special cofibre sequence, and in addition, the morphism w is co-

equivariant with respect to the isomorphism of cogroups Σu : ΣX → ΣA.

(2) Dually, a fibre sequence in Ho C is a diagram

X → Y → Z

32



of morphisms in Ho C , together with a right action X × ΩZ → X of ΩZ on X,

such that there is a commutative diagram

X

u

��

// Y

v

��

// Z

w

��
F

f
// E g

// B

where the vertical arrows are isomorphisms in Ho C , the horizontal line at the

bottom is a special fibre sequence, and in addition, the morphism u is equivariant

with respect to the isomorphism of groups Ωw : ΩZ → ΩB.

Definition 1.3.9. Let C be a pointed simplicial model category.

(1) The boundary morphism of a cofibre sequence X → Y → Z is a morphism

∂ : Z → ΣX in Ho C defined to be the composite

Z → Z q ΣX
(∗,idX)−→ ΣX ,

where the first arrow is the coaction of ΣX on Z.

(2) Dually, the boundary morphism of a fibre sequence X → Y → Z is a morphism

∂ : ΩZ → X in Ho C defined to be the composite

ΩZ
(∗,idX)−→ X × ΩZ → X ,

where the second arrow is the action of ΩZ on X.

Remark 1.3.10. Let C be a pointed model category. Every cofibre sequence in Ho C

of the form

X → Y → Z → ΣX

is isomorphic to a cofibre sequence of the form

A
f→ B

if→ cone(f)
pf→ Σ ,

where A and B are cofibrant objects of C . That is, there is a commutative diagram

X

u

��

// Y

v

��

// Z

w

��

// ΣX

Σu

��
A

f
// B

if
// cone(f) pf

// ΣA

where the vertical arrows are isomorphisms in Ho C .
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Remark 1.3.11. Let A
f→ B

g→ C be a special cofibre sequence in the homotopy

category of a pointed model category C , and let ∂ : C → ΣA be its boundary morphism.

Then from the above definition, we deduce that for any fibrant object X in C , the

induced morphism

∂∗ : [ΣA,X]→ [C,X]

is defined by [h] 7→ [∗] � [h], where ∗ is the trivial morphismC → X. By definition of

the coaction �, the morphism [∗] � [h] is represented by a morphism c : C → X in C

such that

c ◦ g = p1 ◦ α ,

where α : B → X∆[1] is a lifting of the square,

A

f

��

h // X∆[1]

p0

��
B ∗

// X

Thus, one has

h ◦ ∂ = ∂∗(h) = [∗]� [h] = [α] .

Lemma 1.3.12. Suppose C is a pointed model category. If f : X → Y is a cofibration

in C between cofibrant objects, then the canonical morphism

cone(f)→ Y/X

is a weak equivalence.

Proof. Let us consider the following commutative cube of cofibrant objects

X

��

f //

FFFFFFFFFFFFFFF

FFFFFFFFFFFFFFF Y

��

HHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHH

X

��

f // Y

��

cone(X) //

""EEEEEEEEEEEEEEE
cone(f)

##FFFFFFFFFFFFFFF

∗ // X/Y

(1.7)

Since cone(X) → ∗ is a weak equivalence and f : X → Y is a cofibration, the cube

lemma assures that the morphism cone(f)→ Y/X is a weak equivalence.
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1.3.2 Pre-triangulated structure on homotopy categories

Let S be a nontrivial right closed Ho (∆opSets∗)-module, see [18, Definition 4.1.6]. A

pre-triangulation on S is a collection of sequences in S ,

X
f→ Y

g→ Z ,

provided of a coaction of the cogroup ΣX on Z, called cofibre sequences, together with

a collection of sequences in S ,

X
f→ Y

g→ Z ,

provided of an action of the group ΩZ on X, called fibre sequences, satisfying the

following eight axioms:

(PT1) • Every diagram isomorphic to a cofibre sequence is a cofibre sequence,

• Dually, every diagram isomorphic to a fibre sequence is a fibre sequence.

(PT2) For any object X in S ,

• the diagram ∗ → X
idX→ X is a cofibre sequence,

• dually, the diagram X
idX→ X → ∗ is a fibre sequence.

(PT3) For each morphism f : X → Y in S ,

• there is a cofibre sequence the diagram X
f→ Y

g→ Z, where g is a morphism

in S ,

• dually, there is a fibre sequence the diagram W
h→ X

f→ Y , where h is a

morphism in S .

(PT4) (rotation)

• If X
f→ Y

g→ Z is a cofibre sequence, then the sequence

Y
g→ Z

∂→ ΣX

is a cofibre sequence, where ∂ is the boundary morphism of the preceding

cofibre sequence.

• Dually, if X
f→ Y

g→ Z is a fibre sequence, then the sequence

ΩZ
∂→ X

f→ Y

is a fibre sequence, where ∂ is the boundary morphism of the preceding fibre

sequence.
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(PT5) Suppose we have a commutative diagram

X
f //

α

��

Y

β

��
X ′

f ′
// Y ′

• If X
f→ Y

g→ Z and X ′
f ′→ Y ′

g′→ Z ′ are two cofibre sequences, then there is

a Σα-coequivariant morphism γ : Z → Z ′ such that the following diagram

X
f //

α

��

Y

β

��

g // Z

γ

��
X ′

f ′
// Y ′

g′
// Z ′

commutes.

• Dually, if W
h→ X

f→ Y and W ′
h′→ X ′

f ′→ Y ′ are two cofibre sequences, then

there is a Ωβ-equivariant morphism ξ : W → W ′ such that the following

diagram

W

ξ

��

h // X
f //

α

��

Y

β

��
W ′

h′
// X ′

f ′
// Y ′

commutes.

(PT6) (octahedron) Suppose we have a morphisms X
v→ Y

u→ Z.

• If we have cofibre sequences

X
v→ Y

d→ U ,

X
u◦v→ Z

a→ V ,

Y
u→ Z

f→W

then there is a cofibre sequence U
r→ V

s→ W together with a commutative

diagram
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X

v

��@@@@@@@@@@@@@@

u◦v

$$
Z

a

��@@@@@@@@@@@@@@

f

$$
W

Y

d

��@@@@@@@@@@@@@@

u

??~~~~~~~~~~~~~~
V

s

>>

U

r

??

such that r is ΣidX -coinvariant and s is Σv-coinvariant.

• Dually, If we have fibre sequences

U
e→ X

v→ Y ,

V
b→ X

u◦v→ Z ,

W
g→ Y

u→ Z

then there is a fibre sequence U
r→ V

s→ W together with a commutative

diagram

U

r

��

e

$$
X

v

  @@@@@@@@@@@@@@

u◦v

$$
Z

V

s

  

b

>>~~~~~~~~~~~~~~
Y

u

??~~~~~~~~~~~~~~

W

g

>>~~~~~~~~~~~~~~

such that r is Ωu-invariant and s is ΩidZ-invariant.

(PT7) (compatibility of sequences) Suppose we have a cofibre sequence X
f→ Y

g→ Z and

a fibre sequence X ′
i→ Y ′

p→ Z ′.

• If we have a solid commutative diagram

X
f //

α

��

Y

β

��

g // Z

��

∂ // ΣX

α̃−1

��
ΩZ ′

∂
// X ′

i
// Y ′ p

// Z ′
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where α̃−1 is the inverse of the adjoint of α as an element of the group

[ΣX,Z ′], then there is a morphism γ : Z → Y ′ making the diagram commu-

tative.

• dually, if we have a solid commutative diagram

X
f //

δ̃−1

��

Y

��

g // Z

γ

��

∂ // ΣX

δ

��
ΩZ ′

∂
// X ′

i
// Y ′ p

// Z ′

where δ̃−1 is the inverse of the adjoint of δ as an element of the group

[X,ΩZ ′], then there is a morphism β : Y → X ′ making the diagram commu-

tative.

(PT8) (compatibility with the monoidal structure)

• The functor − ∧L − : S ×Ho (∆opSets∗)→ S preserves cofibre sequences

in each variable.

• The functor RHom∗(−,−) : S × Ho (∆opSets∗) → S preserves fibre se-

quences in the second variable and converts cofibre sequences into fibre se-

quences in the first variable.

• Similarly, the functor Map ∗(−,−) : S op × S → Ho (∆opSets∗) preserves

fibre sequences in the second variable and converts cofibre sequences into

fibre sequences in the first variable.

Definition 1.3.13. A pre-triangulated category S is a nontrivial right closed Ho (∆opSets∗)-

module with products and coproducts, together with a pre-triangulation on S .

Theorem 1.3.14. The homotopy category Ho C of a pointed model category C is a

pre-triangulated category.

Proof. It is proven throughout Section 6.4 of [18].

1.3.3 Triangulated structure on homotopy categories

Our principal goal in this section is to see that a stable homotopy category Ho C

together with its cofibre sequences is a triangulated category.

Lemma 1.3.15. Suppose the suspension functor Σ: Ho C → Ho C is an equivalence

of categories. Then Ho C is additive.
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Proof. Since any pre-additive1 category admitting finite coproducts is additive, it it

enough to show that Ho C is pre-additive. In fact, since Σ: Ho C → Ho C is an equiva-

lence of categories, Σ2 : Ho C → Ho C is also an equivalence of categories such that we

have a functorial isomorphism

Σ2(Ω2X) ' X ,

for any objet X in Ho C . Notice that Σ2(Ω2X) is an Abelian cogroup object in Ho C .

Then, any object of Ho C is an Abelian cogroup object in Ho C . In particular for any

two objects X,Y in Ho C , the set HomHo C (X,Y ) is endowed with a structure of an

Abelian group.

Triangulated categories

A triangulated category is a triplet (S ,Σ, S), where S is an additive category, Σ is an

auto-equivalence from S to itself, and S is a set of sequences of morphisms in S ,

X
f→ Y

g→ Z
h→ ΣX ,

called distinguished triangles, usually denoted by

Z

X

+1

??~~~~~~~~~~~~~~ f // Y

g

OO ,

satisfying the following axioms:

(TR1) If D ∈ S and D ' D′, then D′ ∈ S. Moreover, for any X ∈ S , then

(X
idX→ X

0→ 0
0→ ΣX) ∈ S .

(TR2) For each morphism f : X → Y in S , there is a distinguished triangle

X
f→ Y → Z → ΣX

in S.

(TR3) (rotation) The triangle X
f→ Y

g→ Z
h→ ΣX belongs to S if and only if the

triangle Y
g→ Z

h→ ΣX
−Σf→ ΣY belongs to S.

1A pre-additive category is a category C that the set of morphisms HomC (X,Y ) is endowed with a
structure of an Abelian group and the composition ◦ is bilinear.
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(TR4) Given two distinguished triangles

X
f→ Y

g→ Z
h→ ΣX ,

X ′
f ′→ Y ′

g′→ Z ′
h′→ ΣX ′ ,

and a commutative diagram

X
f //

u

��

Y

v

��
X ′

f ′
// Y ′

there exists a morphism w : Z → Z ′ such that the triplet (u, v, w) is a morphism

of triangles, that is, the following diagram

X
f //

u

��

Y

v

��

g // Z

w

��

h // ΣX

Σu

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// ΣX ′

commutes.

(TR5) (octahedron) Given

X
f→ Y

j→ Z ′ → ΣX ,

Y
g→ Z → X ′

i→ ΣY ,

X
g◦f→ Z → Y ′ → ΣX ,

in S, there exist morphisms u : Z ′ → Y ′ and v : Y ′ → X ′ such that

Z ′
u→ Y ′

v→ X ′
Σj◦i→ ΣZ ′

is distinguished, and in the diagram

Y ′

������������

������

�������

v

  AAAAAAAAAAAAAA

Z ′

+1

��

u

>>~~~~~~~~~~~~~~
X ′

Σj◦i
oo

���������������������������

X
g◦f //

  AAAAAAAAAAAAAA Z

OO

00000

000000

XX000000000000

Y

WW0000000000000000000000000
g

>>}}}}}}}}}}}}}}}
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(idX , g, u) is a morphism from the triangle XY Z ′ to the triangle XZY ′ and (f, idZ , v)

is a morphism from the triangle XZY ′ to the triangle Y ZX ′.

Theorem 1.3.16. Let C be a pointed model category. If the suspension functor

Σ: Ho C → Ho C is an equivalence of categories, then Ho C is a triangulated category

where its distinguished triangles are cofibre sequences.

Proof. By Lemma 1.3.15, the homotopy category Ho C is additive. Let us verify the

axioms of a triangulated category:

Axiom TR1: We have cone(idX) = cone(X) and the morphism cone(X)→ ∗ is a weak

equivalence, we have a diagram

X
idX // X // cone(X)

��

// ΣX

X
f

// X // ∗ // ΣA

then the sequence at the bottom is a cofibre sequence.

Axiom TR2: Let g : X → Y be a morphism in Ho C . We choose a morphism f : X → Y

in C which represents g. We consider the fibre sequence

X
f→ Y

if→ cone(f)
pf→ ΣX

in C . This sequence is equal to the sequence

X
g→ Y

if→ cone(f)
pf→ ΣX

in Ho C .

Axiom TR3:

Suppose we have a cofibre sequence

X
f→ Y

if→ cone(f)
pf→ ΣX .

Since ΣX is a colimit of the diagram

Y //

��

cone(f)

∗
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then, there is an universal morphism u : ΣX → cone(if ) together with a commutative
diagram

Y

��

if //

EEEEEEEEEEEEEEE

EEEEEEEEEEEEEEE cone(f)

��

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Y

��

if // ΣX

��

∗ //

""DDDDDDDDDDDDDDD cone(f)

$$HHHHHHHHHHHHHHHH

cone(Y ) // cone(if )

(1.8)

Since the morphism if : Y → cone(f) is a cofibration and ∗ → cone(Y ) is a weak

equivalence, by the cube lemma, we get that u is a weak equivalence such that the

following diagram

X
f // Y

if // cone(f)
pf // ΣX

u

��

−Σf // ΣY

Y
if

// cone(f)
i(if )

// cone(if )
p(if )

// ΣY

is commutative.

Axiom TR4:

Suppose we have a commutative diagram

X

u

��

f // Y

v

��
X ′

f ′
// Y ′
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then we consider the following diagram

X

��

f //

##GGGGGGGGGGGGGGG Y

��

$$JJJJJJJJJJJJJJJJJ

X ′

��

f ′
// Y ′

��

C(X) //

""FFFFFFFFFFFFFF
cone(f)

$$HHHHHHHHHHHHHHHH

C(X ′) // cone(f ′)

(1.9)

thus, we obtain a commutative diagram

X
f //

u

��

Y

v

��

g // Z

w

��

h // ΣX

Σu

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// ΣX ′

Axiom TR5:

Let f : X → Y and g : Y → Z be two cofibrations. We have cofibre sequences

X
f→ Y → Y/X → ΣX ,

Y
g→ Z → Z/Y → ΣY ,

X
g◦f→ Z → Z/X → ΣX .

Then we get a diagram

X

f

��7777777777777

g◦f

""
Z

��>>>>>>>>>>>>>>

%%
Z/Y

��<<<<<<<<<<<<<

%%
Σ(Y/X)

Y

��::::::::::::::

g

AA��������������
Z/X

��>>>>>>>>>>>>>>

@@

ΣY

>>~~~~~~~~~~~~~~

Y/X

@@

::ΣX

@@��������������
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where the sequence Y/X → Z/X → Z/Y → Σ(Y/X) is a cofibre sequence. This

finishes the proof.

We recall that, if C is a pointed model category then the homotopy category Ho (C )

is a closed-Ho (∆opSets∗)-module, see [18].

Definition 1.3.17. A stable model category C is a pointed model such that the sus-

pension functor Σ: Ho (C )→ Ho (C ) is an equivalence of categories.

Theorem 1.3.16 says that the homotopy category of a stable model category is a

triangulated category.

Stable homotopy category with weak generators

Definition 1.3.18. Let T be a triangulated category with arbitrary coproducts. An

object X of T is called compact, if for any family {Yi}i∈I of objects of T , the canonical

homomorphism of Abelian groups⊕
i∈I

HomT (X,Yi)→ HomT (X,
⊕
i∈I

Yi)

is an isomorphism.

Definition 1.3.19. Let S be a pre-triangulated category and let G be a set of objects

of S . The set G is called set of weak generators for S , if HomS (ΣnG,X) = 0 for all

G ∈ G and all n ≥ 0 implies X ' ∗.

Let T be a triangulated category. For any object G of T , we set ΣnG = Ω−n for

integers n < 0. Then, we say that a set G of objects of T is a set of weak generators

for S , if HomS (ΣnG,X) = 0 for all G ∈ G and all n ∈ Z implies X ' ∗.

Example 1.3.20. If S is the sphere spectrum, then G = {S} is a set of weak generators

of the stable homotopy category of symmetric spectra of simplicial sets [20].

1.4 Symmetric spectra

Let us start this section with some preliminaries. The main reference for this section

is [19]. Throughout all the text, a spectrum will be a symmetric spectrum.
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1.4.1 Restriction and corestriction on categories

Let G be a group. We can consider G itself as a category with an object and G as set of

morphisms. For a category C , we denote by CG the category of functors from G to C .

A G-object of C is a pair (X, ρX), where X is an object of C and ρX : G→ AutC (X) is a

homomorphism of groups. A morphism in CG corresponds to aG-equivariant morphism

(X, ρX)→ (X ′, ρX′) of G-objects of C , that is, an endomorphism ϕ : X → X ′ such that

ϕ ◦ ρX(g) = ρX′(g) ◦ ϕ

for all g ∈ G. Note that the giving of a functor G→ C is the same as giving a G-object

of C .

Suppose that C is a category with coproducts and G is a finite group and let n = |G|
be the order of G. For any object X of C , we define an object G × X of CG to the

functor G → C associated to a pair (Xqn, ρXqn) where ρXqn : G → AutC (Xqn) is

defined by permuting the components of Xqn. We have a functor G × − : C → CG.

For any object X of CG, we define an object X/G of C to the colimit X/G :=colimX,

where X is viewed as a functor G→ C . We have a functor −/G : CG → C .

Definition 1.4.1. Let H be a subgroup of G. The restriction functor

resGH : CG → CH

sends a functor G → C to the composite H ↪→ G → C . In terms of G-objects, resGH

sends a G-object (X, ρX) to X, ρ′X , where ρ′X is a composition of the inclusion H ↪→ G

and ρX : G→ AutC (X).

The functor G × − : C → CG induces a functor ΦG
H : CH → (CG)H which sends a

functor H → C to the composite

H → C
G×−−→ CG .

Definition 1.4.2. For any object X in CH , we define

corGH(X) :=colim ΦG
H(X) ,

where ΦG
H(X) is a functor H → CG. In other words, if X is an H-object of C , then

G×X is naturally an H ×G-object, thus G×X can be consider as an H-object and

a G-object. We have,

corGH(X) = (G×X)/H ,

which is naturally a G-object. The functor

corGH : CH → CG

is called corestriction functor.
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Remark 1.4.3. Suppose that G is a finite group. For any object G-object X, the

restriction resG0 (X) is the same object X, that is, the functor resG0 is the forgetful

functor. Moreover, for any object Y of C , one has

corG0 (Y ) = G× Y .

Lemma 1.4.4. (a) The pair (G×−, resG0 ) is an adjunction, that is, one has a bijec-

tion of sets

HomCG(G×X,Y ) ' HomC (X,Y ) .

for any two objects X ∈ C and Y ∈ CG.

(b) The pair (corGH , resGH) is an adjunction, that is, one has a bijection of sets

HomCG(corGH(X), Y ) ' HomCH (X, resGH(Y ))

for any two objects X ∈ CH and Y ∈ CG.

Proof. (a). First of all we prove that there is a bijection

HomCG(G×X,Y ) ' HomC (X,Y ) .

Let G = {g1, . . . , gn} with g1 = e. By definition we have G × X = X q · · · q X (n

copies of X). Suppose we have a morphism ϕ : X q · · · q X → Y of G-objects. Let

i1 : X → X q · · · qX be the canonical morphism corresponding to the first component

of X q · · · qX. Then the composite

X
i1→ X q · · · qX ϕ→ Y

gives a morphism ψ : X → Y . Reciprocally, if we have a morphism ψ : X → Y . By the

universal property, the morphisms X
ψ→ Y

gi→ Y for i = 1, . . . , n, induce a morphism

ϕ : X q · · · qX → Y such that the diagram

X q · · · qX ϕ //

g

��

Y

g

��
X q · · · qX ϕ

// Y

is commutative. Thus ϕ : G ×X → Y is a morphism of G-objects of C , moreover we

have ϕ ◦ i1 = ψ. This proves the required bijection.

(b). It follows from (a) with the additional observation that for every h ∈ H, the

set of commutative diagrams

X q · · · qX ϕ //

h

��

Y

h

��
X q · · · qX ϕ

// Y
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where the action of the left vertical arrow is induced by the action of H on X, is in

bijection with the set of commutative diagrams

X
ψ //

h

��

Y

h

��
X

ψ
// Y

Lemma 1.4.5. Let K ⊂ H be two subgroups of a finite group G. We have an isomor-

phism of functors

corGH ◦ corHK ' corGK .

Proof. It follows from Lemma 1.4.4.

1.4.2 Symmetric sequences

We denote by Σ the coproduct

Σ = Σ0 q Σ1 q Σ2 q · · · q Σn · · · ,

i.e. the category whose objects are non-negative numbers and morphism are given by

HomΣ(m,n) =

{
Σn , if m = n ,

0 , if m 6= n .

Definition 1.4.6. Let C be a category. A functor Σ→ C is called symmetric sequence.

The category of functors C Σ is called category of symmetric sequences over C .

Remark 1.4.7. Since Σ =
∐
n∈N Σn, to provide a symmetric sequence Σ → C is the

same as providing functors Σn → C for all n ∈ N, which is the same as giving a

sequence

(X0, X1, X2, . . . ) ,

where Xn is a Σn-equivariant object of C for n ∈ N.

From the definition, one can deduce that if X and Y are two symmetric sequences

over C , then

HomC Σ(X,Y ) =
∏
n∈N

HomC Σn (Xn, Yn) .

For every n ∈ N, we have an evaluation functor

Evn : C Σ → C Σn ,
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which sends a symmetric sequence X to its n-slide Xn. We also have an evaluation

functor

Evn : C Σ → C ,

which sends a symmetric sequence X to its n-slide Xn without the action of Σn, that

is, Evn(X) = resΣn
Σ0

(Xn). The free functor Gn : C → C Σ is the functor defined as

Gn(X) = Σn ×X

for all n ≥ 0. The free functor Gn : C → C Σ is left adjoint to the evaluation functor

Evn : C Σ → C . In fact, if X is an object in C and if Y is an symmetric sequence in C ,

then to give a morphism Σn×X → Yn of Σn-objects, is the same as giving a morphism

X → resΣn
Σ0

(Yn) = Evn(Y ).

Remark 1.4.8. If C is a monoidal category, then C Σ is naturally a monoidal C -

category. Indeed, we define a product − ⊗ − : C Σ × C → C Σ, as follows. For any

object X in C Σ and any object K in C , we define a symmetric sequence X ⊗ K by

setting

(X ⊗K)n = Xn ⊗K

for all n ≥ 0. If L is another object of C , we have a natural isomorphism

(X ⊗K)⊗ L ' X ⊗ (K ⊗ L) ,

and if 1 is the unit of C , we have a natural isomorphism

X ⊗ 1 ' X .

Lemma 1.4.9. Suppose C is a complete and cocomplete category. Then the category

C Σ of symmetric sequences is also complete and cocomplete.

Proof. Let Φ: I → C Σ be a functor. We define the limit lim Φ and colimit colim Φ to

be

(lim Φ)n := lim(Evn ◦ Φ)

and

(colim Φ)n :=colim (Evn ◦ Φ) .

Since C Σn is complete and cocomplete, lim(Evn ◦Φ) and colim (Evn ◦Φ) are objects of

C Σn , hence lim Φ and colim Φ are objects of C Σ.

Remark 1.4.10. Suppose C is a symmetric monoidal category with a monoidal prod-

uct ⊗. Then for any couple of integers m,n ≥ 0, we have a canonical functor

⊗ : C Σm × C Σn → C Σm×Σn .
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Indeed, suppose that we have objects X ∈ C Σm and Y ∈ C Σn for integers m,n ≥ 0,

and suppose that ρ : Σm → Aut(X) and ρ′ : Σn → Aut(Y ) are their corresponding

representations. We define a homomorphism of groups ρ⊗ρ′ : Σm×Σn → Aut(X⊗Y )

as follows, for any element (σ, τ) ∈ Σm × Σn, we set

(ρ⊗ ρ′)(σ, τ) = ρσ ⊗ ρ′τ .

Now, if X is an Σm-object and Y is an Σn-object of C , then the product X ⊗ Y is an

Σm × Σn-object of C . Thus we have a functor ⊗ : C Σm × C Σn → C Σm×Σn .

Suppose C is a symmetric monoidal category with coproducts. The product of the

symmetric sequences X ⊗ Y of two symmetric sequences X and Y in C Σ is defined as

(X ⊗ Y )n =
∐

i+j=n

corΣn
Σi×Σj

(Xi ⊗ Yj) .

We obtain a bifunctor − ⊗ − : C Σ × C Σ → C Σ which sends a couple (X,Y ) to

X ⊗ Y .

Lemma 1.4.11. For any three symmetric sequences X,Y and Z on C , there is a

natural isomorphism

HomC Σ(X ⊗ Y,Z) '
∏

(i,j)∈N2

Hom
C Σi×Σj

(
Xi ⊗ Yj , res

Σi+j
Σi×Σj

(Zi+j)
)
.

Proof. We have,

HomC Σ(X ⊗ Y,Z) '
∏
n∈N

HomC Σn

 ∐
i+j=n

corΣn
Σi×Σj

(Xi ⊗ Yj), Zn


'
∏
n∈N

∏
i+j=n

HomC Σn

(
corΣn

Σi×Σj
(Xi ⊗ Yj), Zn

)
'
∏
n∈N

∏
i+j=n

HomC Σn

(
Xi ⊗ Yj , resΣn

Σi×Σj
Zn

)
'

∏
(i,j)∈N2

Hom
C Σi×Σj

(
Xi ⊗ Yj , res

Σi+j
Σi×Σj

(Zi+j)
)
.

as required.

Proposition 1.4.12. If C is a closed symmetric monoidal category, then the operation

⊗ is a closed symmetric monoidal product on the category C Σ.

Proof. The unit of C Σ is the symmetric sequence

G0(1) = (1, ∅, ∅, · · · ) ,
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where 1 is the unit of C . Now, let us prove the associativity of ⊗ in C Σ. On one hand,

we have

((X ⊗ Y )⊗ Z)n =
∐

l+k=n

corΣn
Σl×Σk

((X ⊗ Y )l ⊗ Zk)

=
∐

l+k=n

corΣn
Σl×Σk

 ∐
i+j=l

corΣl
Σi×Σj

(Xi ⊗ Yj)⊗ Zk


'

∐
l+k=n

∐
i+j=l

corΣn
Σl×Σk

(
corΣl

Σi×Σj
(Xi ⊗ Yj)⊗ Zk

)
'

∐
i+j+k=n

corΣn
Σl×Σk

(
corΣl×Σk

Σi×Σj×Σk
((Xi ⊗ Yj)⊗ Zk)

)
'

∐
i+j+k=n

corΣn
Σi×Σj×Σk

((Xi ⊗ Yj)⊗ Zk) .

On the other hand, we have

(X ⊗ (Y ⊗ Z))n =
∐
i+l=n

corΣn
Σi×Σl

(Xi ⊗ (Y ⊗ Z)l

=
∐
i+l=n

corΣn
Σi×Σl

Xi ⊗
∐
j+k=l

corΣl
Σj×Σk

(Yj ⊗ Zk)


'

∐
l+k=n

∐
j+k=l

corΣn
Σi×Σl

(
Xi ⊗ corΣl

Σk×Σk
(Yj ⊗ Zk)

)
'

∐
i+j+k=n

corΣn
Σi×Σl

(
corΣi×Σl

Σi×Σj×Σk
(Xi ⊗ (Yj ⊗ Zk))

)
'

∐
i+j+k=n

corΣn
Σi×Σj×Σk

(Xi ⊗ (Yj ⊗ Zk)) .

Hence the isomorphisms (Xi ⊗ Yj) ⊗ Zk ' Xi ⊗ (Yj ⊗ Zk) induces an isomorphism

((X ⊗ Y )⊗ Z)n ' (X ⊗ (Y ⊗ Z))n as Σn-objects, therefore we get an isomorphism of

symmetric sequences

(X ⊗ Y )⊗ Z ' X ⊗ (Y ⊗ Z) .

Let us prove the commutativity of ⊗. We have,

(X ⊗ Y )n =
∐

i+j=n

corΣn
Σi×Σj

(Xi ⊗ Yj)

'
∐

j+i=n

corΣn
Σj×Σi

(Yj ⊗Xi)

= (Y ⊗X)n ,

hence (X ⊗ Y )n ' (Y ⊗X)n for all n ∈ N, then X ⊗ Y ' Y ⊗X.

Now, we give the definition of a monoid in a symmetric monoidal category (see also

[25, Section 4.3]).
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Definition 1.4.13. Let ⊗ be the symmetric monoidal product defined on a category

C with unit 1. A monoid in C is a triplet (R,µR, ηR), where R is an object of C ,

µR : R ⊗ R → R is a morphism called multiplication and ηR : 1 → R is a morphism

called unit morphism, such that they satisfy the conditions below:

(1) (associativity) The diagram

R⊗R⊗R µR⊗idR //

idR⊗µR

��

R⊗R

µR

��
R⊗R µR

// R

is commutative.

(2) (compatibility with the unit) The composites

1⊗R ηR⊗idR−→ R⊗R µR−→ R ,

R⊗ 1 idR⊗ηR−→ R⊗R µR−→ R ,

are the unit isomorphisms of the product ⊗.

In the sequel, we shall simply write R instead of (R,µR, ηR). A monoid R is commu-

tative if it satisfies the following condition:

(3) (commutativity) The diagram

R⊗R µR //

τ

��

R

R⊗R µR
// R

commutes, where τ : R⊗R→ R⊗R is the twist isomorphism of ⊗.

Definition 1.4.14. Let R be a (commutative) monoid in a symmetric monoidal cate-

gory (C ,⊗) with unit 1. A left R-module in C is a pair (X,µX), where X is an object

of C , µX : R ⊗ X → X is a morphism called left action such that they satisfy the

conditions below:

(1) (associativity), the diagram

R⊗R⊗X µR⊗idX //

idX⊗µX

��

R⊗X

µX

��
R⊗X µX

// X

commutes.
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(2) (compatibility with the unit), the composite

1⊗X ηR⊗idX→ R⊗X µX→ X

is the unit isomorphisms of the product ⊗.

We shall simply write X instead of (X,µX).

Let C be a symmetric monoidal category that is cocomplete. Suppose that R is a

commutative monoid in C .

We define a new symmetric product on the category ModR of left R-modules in C

as follows. We define a product

−⊗R − : ModR ×ModR → ModR

given by

(X,Y ) 7→ X ⊗R Y :=coeq

(
X ⊗ (R⊗ Y )

m⊗id //

id⊗m
// X ⊗ Y

)
,

where the arrow at the top means the composite X⊗ (R⊗Y ) ' (X⊗R)⊗Y → X⊗Y
induced by the action X ⊗ R → X, and the arrow at the bottom is the morphism

X ⊗ (R⊗ Y )→ X ⊗ Y induced by the action R⊗ Y → Y .

Lemma 1.4.15. Suppose that R⊗− : C → C preserves coequalizers. Then, for every

pair of left R-modules X and Y in C , the product X ⊗R Y is also a left R-module in

C .

Proof. We define a morphism R ⊗ (X ⊗R Y ) → (X ⊗R Y ). Since R ⊗ − : C → C

preserves coequalizers, R⊗ (X ⊗R Y ) is the equalizer of the diagram

R⊗ (X ⊗ (R⊗ Y ))
m⊗id //

id⊗m
// R⊗ (X ⊗ Y ) .

We have a diagram of the form

(R⊗X)⊗ (R⊗ Y )
//
//

��

R⊗ (X ⊗ Y )

��
X ⊗ (R⊗ Y )

//
// X ⊗ Y

induced by the actions X ⊗ R → X and R ⊗ Y → Y . Since we have an isomorphism

R⊗ (X ⊗ (R⊗ Y )) ' (R⊗X)⊗ (R⊗ Y ), there is a universal morphism

coeq

(
R⊗

(
X ⊗ (R⊗ Y )

)m⊗id//

id⊗m
// R⊗ (X ⊗ Y )

)
−→ coeq

(
X ⊗ (R⊗ Y )

m⊗id//

id⊗m
// X ⊗ Y

)
,

i.e. a morphism R ⊗ (X ⊗R Y ) → (X ⊗R Y ). This morphism defines an action for

X ⊗R Y as required.
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1.4.3 Definition of symmetric spectra

In the sequel, C will be a symmetric monoidal model category, D will be a C -model

category (see [18]) and T will be an object of C .

Definition 1.4.16. The category of symmetric spectra SptT (D) is defined as follows.

A symmetric spectrum is an object X = (X0, X1, . . . , Xn . . . ) of DΣ together with

Σn-equivariant morphisms Xn ⊗ T → Xn+1, such that the composite

Xn ⊗ T⊗p → Xn+1 ⊗ T⊗(p−1) → · · · → Xn+p

is Σn×Σp-equivariant for all n, p ≥ 0. A morphism of symmetric spectra is a collection

of Σn-equivariant morphisms {fn : Xn → Yn}n∈N such that the following diagram

Xn ⊗ T
σX //

fn⊗T

��

Xn+1

fn+1

��
Yn ⊗ T σX

// Yn+1

is commutative for all n ≥ 0.

Remark 1.4.17. A symmetric spectrum is an object X = (X0, X1, . . . , Xn . . . ) of DΣ

where Xn is an object of DΣn , together with morphisms Xn⊗T → Xn+1 in DΣn , such

that the composite

Xn ⊗ T⊗p → Xn+1 ⊗ T⊗(p−1) → · · · → Xn+p

is a morphism in DΣn×Σp for all n, p ≥ 0.

Lemma 1.4.18. The category of symmetric spectra SptT (D) is complete and cocom-

plete.

Proof. If Φ: I → SptT (D) is a functor, we define the limit lim Φ and colimit colim Φ

to be

(lim Φ)n := lim(Evn ◦ Φ)

and

(colim Φ)n :=colim (Evn ◦ Φ) .

Let G = − ⊗ T . Since C Σ is complete and cocomplete, lim Φ and colim Φ are objects

of C Σ. To prove that they are object in SptT (D) we must define their structural

morphisms. First of all, notice that for any functor Ψ: I → C there is a natural

morphism G(lim Ψ)→ limG ◦Ψ. In particular taking Ψ = Evn ◦Φ, we have a natural

morphism

G(lim Evn ◦ Φ)→ lim (G ◦ Evn ◦ Φ) .
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On the other hand, the natural transformation G ◦ Evn → Evn+1 induces a natural

transformation

G ◦ Evn ◦ Φ→ Evn+1 ◦ Φ ,

hence a morphism limG ◦ Evn ◦ Φ → lim Evn+1 ◦ Φ. Then, we define the structure

morphisms of lim Φ to be the composite

G(lim Evn ◦ Φ)→ lim (G ◦ Evn ◦ Φ)→ lim(Evn+1 ◦ Φ) .

Since G is a left adjoint functor, it preserves colimit. Then the structure morphisms

for colim Φ is defined as the composite

G(colim Evn ◦ Φ) ' colim (G ◦ Evn ◦ Φ)
colim (σ◦Φ)−→ colim (G ◦ Evn+1 ◦ Φ) .

Therefore, lim Φ and colim Φ are symmetric T -spectra.

We have an endofunctor −⊗T : C → C which sends an object X to X⊗T . We set

sym(T ) :=(1, T, T⊗2, T⊗3, . . . ) .

Fix an integer n ≥ 0. For any pair (i, j) of non-negative integers such that i + j = n,

we have a canonical morphism

T⊗i ⊗ T⊗j → resΣn
Σi×Σj

(T⊗n) ,

and this has an adjoint morphism

corΣn
Σi×Σj

(T⊗i ⊗ T⊗j)→ T⊗n

where corΣn
Σi×Σj

(T⊗i ⊗ T⊗j) =
(
sym(T ) ⊗ sym(T )

)
n
. Thus, we have a canonical mor-

phism of symmetric sequences

m : sym(T )⊗ sym(T )→ sym(T ) .

Lemma 1.4.19. The object sym(T ) is a commutative monoid in C Σ.

Proof. We prove the commutativity of m on sym(T ). Notice that corΣn
Σi×Σj

(T⊗i⊗T⊗j)
is the coproduct of

(
n
i

)
copies of T⊗i ⊗ T⊗j and corΣn

Σj×Σi
(T⊗j ⊗ T⊗i) is the coproduct

of
(
n
i

)
copies of T⊗j ⊗ T⊗i. Since we have an isomorphism

T⊗i ⊗ T⊗j ' T⊗j ⊗ T⊗i ,

we get an isomorphism

corΣn
Σi×Σj

(T⊗i ⊗ T⊗j) ' corΣn
Σj×Σi

(T⊗j ⊗ T⊗i) .

A similar computation shows the associativity of m and the compatibility with the

unit.
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Proposition 1.4.20. The category SptT (D) of symmetric spectra is equivalent to the

category of left sym(T )-modules in the category of symmetric sequences DΣ.

Proof. It follows after noticing that the giving of a multiplication

m : X ⊗ sym(T )→ X

is the same as providing a collection of Σi × Σj-equivariant morphisms

mi,j : Xi ⊗ T⊗j → Xi+j ,

for all (i, j) ∈ N the compatibility conditions of Definition 1.4.16.

Definition 1.4.21. For each n ∈ N, we define the evaluation functor

Evn : SptT (D)→ D

which sends a symmetric spectrum X to its n-slice Xn. For each n ≥ 0, we define a

functor F̃n : D → DΣ taking an object of A of D into the symmetric sequence

(0, . . . , 0,Σn ×A, 0, 0, . . . ) ,

where Σn ×A lies in the n-th place. Hence, we set

Fn(A) :=F̃n(A)⊗ sym(T ) .

Remark 1.4.22. We have F0(A) = (A,A ⊗ T, . . . , A ⊗ T⊗n, . . . ). In particular, one

has

F0(1) = sym(T ) .

From the definition, we deduce the following formula:

(FnA)m =

{
∅ , if m < n ,

Σm ×Σm−n (A⊗ T⊗(m−n)) , if m ≥ n .

For each n ≥ 0, we define a functor R̃n : D → DΣ to be the functor which sends an

object of A of D to the symmetric sequence

(∗, . . . , ∗,Map (Σn, A), ∗, ∗, . . . ) ,

where Map (Σn, A) lies in the n-th place. Now, we define a functor Rn : D → DΣ to be

the functor

A 7→ Hom(sym(T ), R̃n(A)) .

Lemma 1.4.23. For each n ≥ 0, we have:

(a) The functor Fn : D → SptT (D) is a left adjoint to the evaluation functor Evn.
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(b) The functor Rn : D → SptT (D) is a right adjoint to the evaluation functor Evn.

Proof. It follows from the definitions.

Lemma 1.4.24. For any object A in D and K in C , we have an isomorphism

Fn(A)⊗sym(T ) Fm(K) ' Fm+n(A⊗K)

for any pair n,m ∈ N.

Proof. It follows from the definitions.

1.4.4 Model structures on symmetric spectra

In this section, C will be a left proper cellular symmetric monoidal model category and

D will be a left proper cellular C -model category, and T will denote a cofibrant object

of C . See [17, Definition 12.1.1] for the definition of a cellular model category.

Definition 1.4.25. Let f be a morphism in SptT (D).

(1) f is a level weak equivalence if each morphism fn is a weak equivalence in D . Let

WT be the class of level weak equivalences.

(2) f is a level fibration if each morphism fn is a fibration in D .

(3) f is a projective cofibration if it has the left lifting property with respect to all

level trivial fibrations.

Projective model structure on symmetric spectra

Let I be the generating cofibrations of D and J be the generating trivial cofibrations

of D . We denote

IT :=
⋃
n∈N

FnI and JT :=
⋃
n∈N

FnJ .

Lemma 1.4.26. If an object A of a model category D is small relative to the cofibrations

(resp. trivial cofibrations) in D , then for any n ≥ 0, the spectrum Fn(A) is small relative

to level cofibrations (resp. level trivial cofibrations) in SptT (D).

Proof. Let κ be a cardinal such that A is a κ-small relative to the cofibrations in D .

Let X : λ→ SptT (D) be a λ-sequence such that each morphism Xβ → Xβ+1 is a level

cofibration for β+1 < λ. In particular, the composition Evn◦X : λ→ D is a λ-sequence

such that each morphism Evn(Xβ) → Evn(Xβ+1) is a cofibration in D for β + 1 < λ.

Then, we have

colim β<λHomC (A,Evn(Xβ))
∼−→ HomC (A, colim β<λEvn(Xβ)) .
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Since Evn commutes with colimits we have colim β<λEvn(Xβ) ' Evn(colim β<λXβ).

Hence,

colim β<λHomSptT (D)(FnA,Xβ) ' colim β<λHomD(A,Evn(Xβ))

' HomD(A, colim β<λEvn(Xβ))

' HomD(A,Evn(colim β<λXβ))

' HomSptT (D)(FnA, colim β<λXβ) .

This proves that Fn(A) is small relative to the level cofibrations in SptT (D). In a similar

way, we prove that Fn(A) is small relative to level trivial cofibrations in SptT (D) if A

is small relative to trivial cofibrations in D .

Lemma 1.4.27. We have the following statements:

(a) A morphism in SptT (D) is a level cofibration if and only if it is in ST -proj, where

ST =
⋃
n∈NRn(S) and S is the class of trivial fibrations. Similarly, a morphism

in SptT (D) is a level trivial cofibration if and only if it is in ST -proj, where

ST =
⋃
n∈NRn(S) and S is the class of fibrations.

(b) Every morphism in IT -cof is a level cofibration and every morphism in JT -cof is

a level trivial cofibration.

Proof. (a). Let f : X → Y be a morphism in SptT (D) and let g : A→ B be a morphism

in D . Since the functor Rn is right adjoint to Evn for n ≥ 0, a diagram of the form

X
ϕ //

f

��

Rn(A)

Rn(g)

��
Y

==

ψ
// Rn(B)

corresponds biunivocally to a diagram

Evn(X)
ϕ //

f

��

A

g

��
Evn(Y )

<<

ψ
// B

Then, we deduce that f is a level cofibration (resp. level trivial cofibration) if and only

if f has the left lifting property with respect to Rn(g) and all trivial fibration (resp.

fibration) g in C .

(b). Let f : A→ B be a morphism in I. From the definition, we have

Evm(Fn(f)) =

{
0→ 0 , if m < n ,

corΣm
Σm−n

(f ⊗ Tm−n) , if m ≥ n .
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Notice that, for m ≥ n, one has that corΣm
Σm−n

(f ⊗Tm−n) is a coproduct of m!/(m−n)!

copies of f ⊗ Tm−n. Since − ⊗ T is a left Quillen functor and f is a cofibration in

D , f ⊗ Tm−n is a cofibration in D . Hence the morphism Evm(Fn(f)) is a cofibration

in D . Then every morphism of Fn(I) is a level cofibration, and every morphism of

IT =
⋃
n∈N Fn(I) is a level cofibration. By (a), we deduce that IT ⊂ ST -proj, hence

IT -cof ⊂ (ST -proj)-cof, but (ST -proj)-cof = ST -proj, then IT -cof ⊂ ST -proj. Again by

(a), we conclude that every morphism in IT -cof is a level cofibration. The proof of the

second case for JT -cof is similar.

Corollary 1.4.28. The domains of the morphisms of IT are small relative to IT -cell

and the domains of the morphisms of JT are small relative to JT -cell.

Proof: From the definition of IT , we get dom (IT ) =
⋃
n∈N Fn(dom (I)). If X ∈

dom (IT ), then X is equal to Fn(A) for some n ∈ N and some object A ∈ dom (I). Since

D is a cofibrantly generated model category and I is its set of generating cofibrations,

the domains of I are small relative to the cofibrations of D ; in particular, A has this

property. By Lemma 1.4.26, the symmetric spectrum X = Fn(A) is small relative to

level cofibrations in SptT (D). By Lemma 1.4.27, the class IT -cof is contained in the

class of level cofibrations. Since IT -cell ⊂ IT -cof, the class IT -cell is contained in the

class of level cofibrations. Hence, X = Fn(A) is small relative to IT -cell, as required.

In a similar way, we prove that the domains of the morphisms of JT are small relative

to J-cell. 2

Proposition 1.4.29. We have the following assertions:

(a) A morphism of symmetric spectra is a level trivial fibration if and only if it is in

IT -inj.

(b) A morphism of symmetric spectra is a projective cofibration if and only if it is in

IT -cof.

(c) A morphism of symmetric spectra is a level fibration if and only if it is in JT -inj.

(d) A morphism of symmetric spectra is a projective cofibration and level weak equiv-

alence if and only if it is in JT -cof.

Proof. (a). Let f : X → Y be a morphism in SptT (D) and let g : A→ B be a morphism

in I. Since the functor Fn is left adjoint to Evn for n ≥ 0, a diagram

Fn(A)
ϕ //

Fn(g)

��

X

f

��
Fn(B)

==

ψ
// Y
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corresponds biunivocally to a diagram

A
ϕ //

g

��

Evn(X)

Evn(f)

��
B

<<

ψ
// Evn(Y )

We deduce that a morphism f is a level trivial fibration if and only if it is in IT -inj.

(b). It follows immediately from (a).

(c). Let f : X → Y be a morphism in SptT (D) and let g : A → B be a morphism

in J . Since the functor Fn is left adjoint to Evn for n ≥ 0, a diagram

Fn(A)
ϕ //

Fn(g)

��

X

f

��
Fn(B)

==

ψ
// Y

corresponds biunivocally to a diagram

A
ϕ //

g

��

Evn(X)

Evn(f)

��
B

<<

ψ
// Evn(Y )

We deduce that a morphism f is a level fibration if and only if it is in JT -inj.

(d). Since the class JT -inj is equal to the class of level fibration, every morphism in

JT -cof has the left lifting property with respect to level fibrations, and in particular to

level trivial fibrations. Thus every morphism in JT -cof is a projective cofibration. One

deduces that every morphism in JT -cof is a level weak equivalence. Therefore, every

morphism in JT -cof is a projective cofibration and a level weak equivalence. Recip-

rocally, suppose that f is both a projective cofibration and a level weak equivalence.

By the small object argument, we can decompose f into a composite p ◦ i, where p is

in JT -inj and i is in JT -cof. By what we said above, i is in particular a level weak

equivalence. Hence, by the 2-out-of-3 axiom p is a level equivalence. Then, p is level

trivial fibration, and f has the left lifting property with respect to p, so that f is retract

of i. This allows us to conclude that f is in JT -cof, as required.

Theorem 1.4.30. The projective cofibrations, level fibrations and level weak equiva-

lence define a left proper cellular model structure on SptT (D) generated by the triplet

(IT , JT ,WT ) .
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Proof of (MC1): By Lemma 1.4.18, the category SptT (D) is complete and cocomplete.

Proof of (MC2): Let

X
g◦f //

f

��@@@@@@@@@@@@@@ Z

Y

g

??~~~~~~~~~~~~~~

be a commutative triangle of symmetric T -spectra, where two of f , g and g ◦f are level

weak equivalences. Then for any n ≥ 0, we have commutative triangles

Xn
gn◦fn //

fn

  AAAAAAAAAAAAAA Zn

Yn

gn

>>}}}}}}}}}}}}}}

where two of fn, gn and gn◦fn are weak equivalences in D . Since D is a model category,

it satisfies the 2-out-of-3 axiom, then all the three morphisms fn, gn and gn ◦ fn are

weak equivalences for all n. Thus, the three morphisms f , g and g ◦ f are level weak

equivalences.

Proof of (MC3): Let f : X → Y and g : X ′ → Y ′ are morphisms of spectra such that

f is a retract of g. By definition, we have a commutative diagram of the form

X
ϕ //

f

��

X ′
ϕ′ //

g

��

X

f

��
Y

φ
// Y ′

ψ′
// Y

where the horizontal composites are identities. Then, for n ≥ 0 we have a commutative

diagram

Xn
ϕ //

fn

��

X ′n
ϕ′n //

gn

��

Xn

fn

��
Yn

φn
// Y ′n ψ′n

// Yn

where the horizontal composites are identities. By the retract axiom of D , one deduces

that, if g is a level weak equivalence or a level fibration, then f is so. On the other
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hand, if g is a projective cofibration, then f is projective cofibration, as the class of

projective cofibrations are defined by using the left lifting property.

Proof of (MC4): By definition, projective cofibrations have the left lifting property

with respect with level trivial fibrations. Let

A
ϕ //

i

��

X

p

��
B

ψ
// Y

be a commutative square where p is a level fibration and i is both a projective cofibration

and a level weak equivalence. By Proposition 1.4.29 (c) and (d), the square above has

a lifting, as required.

Proof of (MC5): The class of morphisms IT and JT permits the small object argument,

see [19]. Then, there are functorial factorizations α and β such that any morphism

f : X → Y of symmetric T -spectra can be factored as

f = β(f) ◦ α(f) and f = δ(f) ◦ γ(f) ,

where

- β(f) is in IT -inj, α(f) is in IT -cell,

- δ(f) is in JT -inj, γ(f) is in JT -cell.

Since IT -cell ⊂ IT -cof, the Proposition 1.4.29 implies that:

- β(f) is a level trivial fibration, α(f) is a projective cofibration, and

- δ(f) is a level fibration, γ(f) is a projective cofibration and level weak equivalence.

This proves that SptT (D) is a model category with generating cofibrations IT and

generating trivial cofibrations JT . Since colimits and pushouts in SptT (D) are taken

level-wise and every projective cofibration is in particular a level cofibrations, the left

properness on SptT (D) follows immediately. For the proof of the cellularity condition,

see appendix of [19]. This completes the proof of the theorem.
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Stable model structure on symmetric spectra

In order to define the stable model structure on SptT (D), we shall use the Bousfield

localization of the projective model structure on SptT (D) with respect to a certain set

S, so that the functor − ⊗ T : SptT (D) → SptT (D) will be a Quillen equivalence. We

shall define the S as follows. For each object X in D and integer n ≥ 0, let

ζXn : Fn+1(X ⊗ T )→ Fn(X)

the morphism corresponding by adjunction to the morphism

X ⊗ T → Evn+1(Fn(X)) = Σn+1 ×Σ1 (X ⊗ T ) ,

which induced by the canonical embedding of Σ1 into Σn.

Definition 1.4.31. A symmetric spectrum X is called U -spectrum if X is level fibrant

and the adjoint σ̃ : Xn → UXn+1 of the structural morphism σ : Xn ⊗ T → Xn+1, is a

weak equivalence for all n ≥ 0.

Lemma 1.4.32. Let Q be the cofibrant replacement functor of D . Then, the following

statements are equivalents:

(a) A symmetric spectrum X is an U -spectrum.

(b) For any object C in dom (I), the morphism ζQCn from Fn+1(QC ⊗ T ) to FnQC

induces an isomorphism

map (FnQC,X)
∼−→ map (Fn+1(QC ⊗ T ), X) ,

where map (−,−) is the homotopy function complex, see [19, p. 74].

Proof. It follows from the definition of the morphisms ζQCn for n ∈ N.

The previous lemma motivates the following definition to define S as the set{
ζQCn |C ∈ dom (I) ∪ codom (I), n ∈ N

}
.

Definition 1.4.33. We define the stable model structure on SptT (D) to be the localiza-

tion of the projective model structure on SptT (D) with respect to S. We shall refer to

the S-local weak equivalences as stable weak equivalences and to the S-local fibrations

as stable fibrations.

The stable model structure on SptT (D) is the Bousfield localization, cf. [17], of the

projective model structure on SptT (D) with respect to a certain set S. The stable

model structure on SptT (D) is left proper and cellular generated by

(IT , JT,S ,WS,T ) .
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Theorem 1.4.34. Let C be a left proper cellular symmetric monoidal model category

and let D be a left proper cellular C -model category. Suppose the domains of the

generating cofibrations of C , D are cofibrant. If f : T → T ′ is a weak equivalence of

cofibrant objects of C , then f induces a natural Quillen equivalence

(−)⊗sym(T ) sym(T ′) : SptT (D)→ SptT ′(D) .

Proof. See [19].
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Chapter 2

Motivic categories

In this chapter, we compile fundamental results of A1-homotopy theory of schemes

developed by F. Morel and V. Voevodsky, [30].

2.1 Simplicial presheaves and sheaves

In this section we shall overview different model structures on the category of simplicial

(pre-) sheaves on a small Grothendieck site.

2.1.1 Simplicial presheaves

Let C be a category. The category of presheaves Pre(C ) is by definition the category

SetsC op
of functors from C op to Sets. The category of simplicial presheaves on C is

the category of simplicial objects in Pre(C ) which is denoted by ∆opPre(C ). An object

X of ∆opPre(C ) is determined by a sequence {Xn}n≥0 together with face morphisms

dni : Xn →Xn−1 for n ≥ 1 and 0 ≤ i ≤ n; and degeneracy morphisms snj : Xn →Xn+1

for n ≥ 0 and 0 ≤ j ≤ n , satisfying the following simplicial relations:

dni ◦ dn+1
j = dnj−1 ◦ dn+1

i , (i < j) ,

sn+1
i ◦ snj = sn+1

j+1 ◦ s
n
i , (i ≤ j) ,

dni ◦ sn−1
j =


sn−2
j−1 ◦ d

n−1
i , if j < i ,

idXn−1 , if i = j or i = j + 1 ,

sn−2
j ◦ dn−1

i−1 , if i > j + 1 .

(2.1)

Let X ,Y be two simplicial presheaves. The giving of a morphism of simplicial presheaves

f : X → Y is the same as giving a sequence of morphisms of presheaves

{fn : Xn → Yn}n∈N ,

satisfying the equalities:

Y d
n
i ◦ fn = fn−1 ◦ X dni (n ≥ 1) , Y s

n
i ◦ fn = fn+1 ◦ X sni (n ≥ 0) ,
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for all 0 ≤ i ≤ n, where X dni , X sni (resp. Y d
n
i , Y s

n
i ) are the face and degeneracy

morphisms of X (resp. of Y ).

Remark 2.1.1. The category ∆opPre(C ) of simplicial presheaves is canonically iso-

morphic to the following categories:

(1) Sets(∆×C )op
,

(2) Sets∆op×C op
,

(3) (Sets∆op
)C op

= (∆opSets)C op
,

(4) (SetsC op
)∆op

= (PreC )∆op
.

Definition 2.1.2. Let C be a category. For every object U ∈ C and every integer

n ≥ 0, we shall denote by ∆U [n] the representable functor

HomC×∆

(
−, (U, [n])

)
: (C ×∆)op −→ Sets ,

defined by

(X, [m]) 7→ HomC (X,U)×Hom∆([m], [n]) .

Notice that ∆U [n] is an object of Sets(C×∆)op
, and by Remark 2.1.1, it can be seen

as an object of ∆opPre(C ).

Lemma 2.1.3. Let C be a category. The functor

C → ∆opPre(C )

defined by U 7→ ∆0
U is fully faithful.

Proof. By Remark 2.1.1, the category ∆opPre(C ) is identified with Sets(∆×C )op
. By

the Yoneda’s lemma, the canonical functor C ×∆→ Sets(∆×C )op
is fully faithful. On

the other hand, the functor C → C ×∆, which sends an object U of C to the object

(U, [0]) of C ×∆, is also fully faithful. Therefore, the functor C → ∆opPre(C ) is fully

faithful since it is the composition of two fully faithful functors.

Lemma 2.1.4. Let X be an object of ∆opPre(C ) and let U be an object of C . If x is

an n-simplex of X (U), then x induces a canonical morphism of simplicial presheaves

∆U [n]→X .

Proof. Let us fix an object U ∈ C . For any object V ∈ C , we have by definition,

∆U [n](V ) = HomC (V,U)×∆[n] '
∐

ϕ∈HomC (V,U)

∆[n] .

Then, for every object V ∈ C , we define a morphism ϕV : ∆U [n](V ) → X (V ) to be

the morphism induced by the composite

∆[n]
x̃→X (U)

ϕ∗→X (V ) ,
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where x̃ is the induced morphism by x. If V → V ′ is a morphism in C , we naturally

deduce a commutative diagram

∆U [n](V ′)

��

ϕV ′ //X (V ′)

��
∆U [n](V )

ϕV //X (V )

where the vertical morphisms are the restriction morphisms. This shows that the

morphisms ϕV give a morphism of simplicial presheaves ∆U [n]→X .

2.1.2 Standard model structures on simplicial presheaves

Here we give a brief overview of several model structures of the category of simplicial

presheaves on a small Grothendieck site.

We recall that a Grothendieck site is a category equipped with a Grothendieck

topology, see [38]. We refer to [1] for an exhaustive treatment of the theory of sheaves

and topos. Notice that a Grothendieck topology in [38] is called a Grothendieck pre-

topology in [1]. In the sequel, a Grothendieck site will always be a small Grothendieck

site, i.e. the underlying category is small.

In the next paragraphs, C will be a Grothendieck site and Shv(C ) will denote the

category of sheaves on C . We have a sheafification functor −a from Pre(C ) to Shv(C )

defined as the left adjoint,

−a : Pre(C )
//
Shv(C )oo , (2.2)

of the forgetful functor. A point x of the site C is a geometric morphism

x : Sets −→ Shv(C ) ,

that is, an adjunction (x∗, x∗) between Shv(C ) and Sets, such that x∗ preserves finite

limits. The stalk of a sheaf F in Shv(C ) at x is the set x∗(F ), whereas the stalk of a

presheaf G in Pre(C ) at x is the set x∗(Ga).

The adjunction (2.2) and the adjunction (x∗, x∗) induce a composition of adjunc-

tions

∆opPre(C )
//
∆opShv(C )oo

//
∆opSetsoo .

If X is an object in Shv(C ) (resp. in ∆opPre(C ) ), then the stalk of X at x is

the image of X trough the above functor from ∆opShv(C ) to ∆opSets (resp. from

∆opPre(C ) to ∆opSets). In the next paragraphs, we shall suppose that C is a site

with enough points, see [1].
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Definition 2.1.5. A morphism f : X → Y in Pre(C ), or in Shv(C ), is a sectionwise

weak equivalence (resp. a sectionwise fibration, or a sectionwise cofibration) if for every

object U in C , the morphism f(U) : X (U) → Y (U) is a weak equivalence (resp. a

fibration, or a cofibration) of simplicial sets (see Example 1.1.11).

Definition 2.1.6. A morphism f : X → Y in Pre(C ), or in Shv(C ), is a local weak

equivalence if f is a stalkwise weak equivalence of simplicial sets.

The following table shows the standard model structures on the category of simpli-

cial presheaves.

Category Weak equivalences Fibrations Cofibrations

∆opPre(C )inj sectionwise weak equiv. RLP sectionwise cof.

∆opPre(C )proj sectionwise weak equiv. sectionwise fib. LLP

∆opPre(C )loc
inj local weak equiv. RLP sectiontwise cof.

∆opPre(C )loc
proj local weak equiv. sectionwise fib. LLP

Here, RLP (resp. LLP) means that the class of fibrations (resp. cofibrations) is defined

by using the right lifting property (resp. left lifting property). The abbreviation inj

(resp. proj) means injective (resp. projective) model structure. We use the same

notations for Shv(C ).

Theorem 2.1.7 (Heller). The category ∆opPre(C )inj acquires a structure of a proper

simplicial cofibrantly generated model category.

Proof. See [16].

Theorem 2.1.8 (Bousfield-Kan). The category ∆opPre(C )proj admits a structure of a

proper simplicial cellular model category.

Proof. More generally, see [17] for projective model structures for diagrams.

Theorem 2.1.9 (Jardine). The category ∆opPre(C )loc
inj is a proper simplicial cellular

generated category.

Proof. The idea of the proof consists in using Joyal’s trick (Lemma 1.1.52), see [21].

Theorem 2.1.10 (Blander). The category ∆opPre(C )loc
proj is a proper simplicial cellular

model category.

Proof. See [3].

Theorem 2.1.11 (Joyal). The category ∆opShv(C )loc
inj acquires a structure of a proper

simplicial cofibrantly generated model category.
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Proof. We refer to [21].

Theorem 2.1.12 (Brown-Gersten). The category ∆opShv(C )loc
proj is a proper simplicial

cellular model category.

Proof. See [42].

The following diagram shows the relationship of standard model structures on sim-

plicial (pre-) sheaves on a site C ,

∆opPre(C )proj

Quillen equiv. //

left Bous. loc.

��

∆opPre(C )injoo

left Bous. loc.

��
∆opPre(C )loc

proj

wwoooooooooooooooo

//
∆opPre(C )loc

inj

wwooooooooooooooo
oo

∆opShv(C )loc
proj

77oooooooooooooooo
//
∆opShv(C )loc

inj

77ooooooooooooooo

oo

where the double arrows mean Quillen adjunctions, see Definition 1.2.1.

2.2 Simplicial radditive functors

A radditive functor means a right additive functor, i.e. a functor that sends finite

coproducts to finite products, see Definition 2.2.1. The main reference for this section

is [41]. In this section, C will be a category closed under finite coproducts, unless

otherwise mentioned.

2.2.1 Radditive functors

We start our discussion in this section giving the definition of radditive functors.

Definition 2.2.1. A functor

F : C op → Sets

is called radditive1 if it satisfies the following axioms:

(1) If ∅ is the initial object of C , then F (∅) = pt

1Or right additive functor
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(2) For any integer n ≥ 1 and any finite collection {Xi}ni=1 of objects of C , the

canonical morphism of sets

F

(
n∐
i=1

Xi

)
→

n∏
i=1

F (Xi)

is bijective.

We shall denote by Rad(C ) the full subcategory of the category of presheaves Pre(C )

consisting of radditive functors.

By definition, we have a full embedding functor given by the forgetful functor,

ι : Rad(C ) ↪→ Pre(C ) .

Example 2.2.2. If C is an additive category, then Rad(C ) is equivalent to the Abelian

category of functors from C op to the category of Abelian groups.

Remark 2.2.3. The coproduct of Rad(C ) is not the coproduct of Pre(C ). For ex-

ample, if X, Y are two objects of C , then the coproduct hX q hY in Pre(C ) is not a

radditive functor, because it does not satisfy the conditions (1) and (2) of the Definition

2.2.1. In fact, if U and V are two objects of C , then, on the one hand we have

(hX q hY )(U q V ) = hX(U q V )q hY (U q V )

= HomC (U q V,X)qHomC (U q V, Y )

=
(

HomC (U,X)×HomC (V,X)
)
q
(

HomC (U, Y )×HomC (V, Y )
)
,

and, on the other hand we have

(hX q hY )(U)× (hX q hY )(V ) =
(
hX(U)q hY (U)

)
×
(
hX(V )q hY (V )

)
,

where the right-hand side is bijective to(
hX(U)× hX(V )

)
q
(
hX(U)q hY (V )

)
q
(
hY (U)× hX(V )

)
q
(
hY (U)q hY (V )

)
.

Then (hX q hY )(U q V ) is not canonically bijective to (hX q hY )(U)× (hX q hY )(V ),

thus hX q hY fails condition (2) of Definition 2.2.1. In general, if F and G are two

radditive functors, then coproduct F q G in Pre(C ) does not satisfies condition (1),

since one has (F qG)(0) = F (0) qG(0) = pt q pt and pt q pt is not a final object in

Rad(C ).

Definition 2.2.4. Let C be a small category. We denote by Cq<∞ the full subcategory

of Pre(C ) generated by finite coproducts of representable presheaves on C .
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The following lemma says that one can recover the category of presheaves from the

category of radditive functors, see [41, Example 3.1].

Lemma 2.2.5. Let C be a small category. Then, we have an isomorphism of categories

Rad(Cq<∞) ' Pre(C ) .

Proof. Let F be a presheaf on C . We define a contravariant functor F from Cq<∞ to

Sets defined by F (hX) :=F (X) for all object X ∈ C . If hX → hY is a morphism of

representable functors determined by a morphism f : X → Y in C , then we defined

F (hX → hY ) to be the morphism F (f) : F (Y ) → F (X). If C has a initial object ∅,
then F (∅) = F (∅) = pt, and

F

(
n∐
i=1

hXi

)
:=

n∏
i=1

F (Xi) ,

for all finite collection {Xi}ni=1 of objects of C . This defines a functor

Pre(C )→ Rad(Cq<∞) .

On the other hand, if G is an object in Rad(Cq<∞), we define a functor G̃ : C op → Sets

by X 7→ G(hX). This defines the inverse of the above functor.

Suppose that C has a final object ∗. We recall that C+ denotes the full category of

the category of pointed objects in C , generated by objects X+ = X q ∗ for objects X

in C , see 5.

Lemma 2.2.6. Suppose that C has a final object ∗. The category Rad(C+) is equivalent

to the category Rad(C )∗.

Proof. We define a functor Φ : Rad(C+) → Rad(C )∗ sending any F in Rad(C+) to a

functor Φ(F ) given by Φ(F )(X) = F (X+) for every object X in C . Notice that the

canonical morphism X+ → ∗ induces a morphism ∗ = F (∗)→ F (X+), which makes of

Φ(F ) a pointed presheaf. Reciprocally, we define a functor Ψ : Rad(C )∗ → Rad(C+)

sending a pointed functor (G, ∗) to a functor Ψ(G, ∗) given by Ψ(G, ∗)(X+) = G(X)

for every object X+ in C+. For a morphism f : X+ → Y+, we set Ψ(G, ∗)(f) to be the

composite

G(Y )
(id,∗)−→ G(Y )×G(∗) ' G(Y+)→ G(X+) ' G(X)×G(∗)→ G(X) ,

where the last morphism of induced by the identity of G(X) and the restriction mor-

phism induced by the morphism X → ∗. It is not difficult to verify that Φ and Ψ define

an equivalence of categories.

Lemma 2.2.7. We have the following assertions:
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(a) Any representable functor is radditive.

(b) The Yoneda embedding induces a functor

h : C → Rad(C ) ,

which commutes with finite products.

(c) If X and Y are two objects of C , then the coproduct of hX and hY in Rad(C ) is

the representable functor hXqY . In consequence, the Yoneda embedding h of C

into Rad(C ) preserves finite coproducts.

(d) The category Rad(C ) is complete.

(e) If F : J → Rad(C ) is a filtered functor, then the colimit colimF in ∆opPre(C )

is radditive.

(f) The category Rad(C ) is closed under arbitrary coproducts of representable func-

tors.

Proof. (a). Let X be an object of C . We have hX(∅) = HomC (∅, X) = pt. If {Ui}i∈I
is a finite collection of objects of C , then we have,

hX

(∐
i∈I

Ui

)
= HomC

(∐
i∈I

Ui, X

)
=
∏
i∈I

HomC (Ui, X) =
∏
i∈I

hX(Ui) ,

therefore hX is radditive.

(b). By (a), the Yoneda embedding C → Pre(C ) factors through h : C → Rad(C ).

Now, if X and Y be two objects of C , then we have hX×Y = hX × hY ; moreover, a

finite product of radditive functors is radditive (see also proof of (d)).

(c). Let X and Y be two objects of C , let F be a radditive functor on C and suppose

that there are two morphisms hX → F and hY → F . Since F is radditive, we have

F (X q Y ) ' F (X)× F (Y ). By Yoneda’s lemma the morphisms hX → F and hY → F

correspond to two elements a ∈ F (X) and b ∈ F (Y ). Since (a, b) ∈ F (X)× F (Y ) and

F (X) × F (Y ) ' F (X q Y ), the pair (a, b) corresponds, by the Yoneda’s lemma, to a

morphism hXqY → F such that the following diagram

hX

�� ""
hXqY // F

hY

BB <<
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is commutative. This proves that hXqY is the coproduct of hX and hY in Rad(C ).

(d). Let Φ : J → Rad(C ) be a functor and let ι : Rad(C ) → Pre(C ) be the

forgetful functor. Since arbitrary limits commute finite products, the limit lim(ι ◦Φ) is

a radditive functor. Then we define lim Φ to be the limit lim(ι ◦ Φ).

(e). Let F : J → Rad(C ) be a filtered functor and let colimF be the colimit in

∆opPre(C ). For every object j ∈ J , we have F (j)(∅) = pt. Notice that the functor

J → Sets given by j 7→ F (j)(∅) = pt has colimit (colimF )(∅). Since J is a filtered

category, we get (colimF )(∅) = pt. On the other hand, for each object j ∈ J and for

every two objects X,Y ∈ C , we have F (j)(XqY ) = F (j)(X)×F (j)(Y ). Since filtered

colimits commute with finite products in the category of sets, we have

(colimF )(X q Y ) = (colimF )(X)× (colimF )(Y ) ,

thus, colimF is a radditive functor.

(f). Let I be a non-empty set of indices and let {Xi}i∈I be a family of objects of

C . Let us denote by Pf (I) the set of finite subsets of I. We order Pfin(I) with the

inclusion of sets ⊆. Thus Pfin(I) can be consider as a category, in which the morphism

are determined by the partial order ⊆. We define a functor

Φ : Pfin(I)→ Rad(C )

given by

A 7→ h(
∐
i∈AXi)

.

This is a functor; indeed, if A ⊆ B, then we have a canonical morphism
∐
i∈AXi →∐

i∈BXi in C , hence we have a morphism h(
∐
i∈AXi)

→ h(
∐
i∈B Xi)

in Rad(C ). We claim

that colim Φ is the coproduct in Rad(C ) of the collection {hXi}∈I . Indeed, let F be an

object of Rad(C ) and suppose that we have a collection {hXi → F}i∈I of morphism

of simplicial radditive functors. For each A ∈ Pfin(I), the item (c) allows to deduce

that h(
∐
i∈AXi)

is the coproduct of the finite family {hXi}i∈A. Hence, there exists a

universal morphism h(
∐
i∈AXi)

→ F such that we have a commutative diagram

hXi

�� !!
h(

∐
i∈AXi)

// F

(2.3)

for all i ∈ A. Now, if A ⊆ B is an inclusion of elements of Pfin(I), then we have a
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commutative diagram

h(
∐
i∈AXi)

��

""FFFFFFFFFFFFFFFF

F

h(
∐
i∈B Xi)

<<xxxxxxxxxxxxxxxxx

It follows that, there is a universal morphism colim Φ → F such that we have a com-

mutative diagram

h(
∐
i∈AXi)

  !!
colim Φ // F

(2.4)

for all A ∈ Pfin(I). Combining diagrams (2.3) and (2.4), we get a commutative

diagram

hXi

��   
colim Φ // F

for all i ∈ I. This proves our claim.

Reflexive coequalizers

Next, we shall recall the notion of reflexive coequalizer, and prove in Lemma 2.2.11,

that the category of simplicial presheaves Rad(C ) is closed under reflexive coequalizers.

This result will be used in the proof of the existence of the radditivization functor (see

Proposition 2.2.13).

Definition 2.2.8. Let C be an arbitrary category and let

A
f //
g

// B // X

be a coequalizer in C . We say that X is a reflexive coequalizer, if f and g have a

common section, that is, there is a morphism s : B → A such that f ◦ s = g ◦ s = idB.

In this case, the pair (f, g) is called reflexive diagram.
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Lemma 2.2.9. Let C be an arbitrary category. Suppose that we have a diagram

X1

f1 //
f2

//

α2

��

α1

��

X2
f3 //

β2

��

β1

��

X3

γ2

��

γ1

��
Y1

g1 //
g2

//

α3

��

Y2
g3 //

β3

��

Y3

γ3

��
Z1

h1 //
h2

// Z2
h3 // Z3

in C , in which the rows and the columns are coequalizers, and the pairs (f1, f2) and

(α1, α2) are reflexive, and the following diagram

X1
fi //

αj

��

X2
f3 //

βj

��

X3

γj

��
Y1

gi //

α3

��

Y2
g3 //

β3

��

Y3

γ3

��
Z1

hi // Z2
h3 // Z3

is commutative for 1 ≤ i, j ≤ 2. Then the diagonal

X1

β1◦f1 //

β2◦f2

// Y2
γ3◦g3 // Z3 (2.5)

is a coequalizer.

Proof. First of all, we shall prove that the lower right-hand square is a pushout. Indeed,

by hypothesis f3 and α3 are coequalizers, so, they are epimorphisms. Hence we have

the following,

γ3 = coeq(γ1, γ2) = coeq(γ1 ◦ f3, γ2 ◦ f3) ,

h3 = coeq(h1, h2) = coeq(h1 ◦ α3, h2 ◦ α3) .

Since γ1 ◦ f3 = g3 ◦ β1 and γ1 ◦ f3 = g3 ◦ β1, we get

γ3 = coeq(g3 ◦ β1, g3 ◦ β2) .

Similarly, since h1 ◦ α3 = β3 ◦ g1 and h2 ◦ α3 = β3 ◦ g2, we get

h3 = coeq(β3 ◦ g1, β3 ◦ g2) .
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Now, let

Y2

β3

��

g3 // Y3

a

��
Z2

b
// T

be a commutative square in C , so that a ◦ g3 = b ◦ β3. We have the equalities,

a ◦ (g3 ◦ β1) = (a ◦ g3) ◦ β1

= (b ◦ β3) ◦ β1

= b ◦ (β3 ◦ β1)

= b ◦ (β3 ◦ β2) (because β3 = coeq(β1, β2))

= (b ◦ β3) ◦ β2

= (a ◦ g3) ◦ β2

= a ◦ (g3 ◦ g2) ,

so that, we get a ◦ (g3 ◦ β1) = a ◦ (g3 ◦ β2). Since γ3 = coeq(g3 ◦ β1, g3 ◦ β2), there is a

universal morphism ρ1 : T → Z3 together with a commutative diagram

Y3

a

��

γ3

��
Z3

ρ1

��
T

(2.6)

Similarly, we have the equalities,

b ◦ (β3 ◦ g1) = (b ◦ β3) ◦ g1

= (a ◦ g3) ◦ g1

= a ◦ (g3 ◦ g1)

= a ◦ (g3 ◦ g2) (because g3 = coeq(g1, g2))

= (a ◦ g3) ◦ g2

= (b ◦ β3) ◦ g2

= b ◦ (β3 ◦ g2) .

Thus, we get b ◦ (β3 ◦ g1) = b ◦ (β3 ◦ g2). Since h3 = coeq(β3 ◦ g1, β3 ◦ g2), there is a
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universal morphism ρ2 : T → Z3 together with a commutative diagram

Z2

b

--

h3 // Z3

ρ2

��
T

(2.7)

We claim that, ρ1 = ρ2. By the universal property of coequalizer, it is enough to show

that ρ1 ◦ h3 = b. In fact, we have the equalities,

(ρ1 ◦ h3) ◦ β3 = ρ1 ◦ (h3 ◦ β3)

= ρ1 ◦ (γ3 ◦ g3)

= (ρ1 ◦ γ3) ◦ g3

= a ◦ g3 (by diagram (2.6))

= b ◦ β3 ,

thus, (ρ1 ◦ h3) ◦ β3 = b ◦ β3. Since β3 is a coequalizer, it is an epimorphism, hence from

the preceding equality, we get ρ1 ◦h3 = b, as required. Therefore, we ha a commutative

diagram

Y2
g3 //

β3

��

Y3

γ3

�� a

��

Z1
h3

//

b

--

Z3

ρ1=ρ2

��
T

which proves that the above square is, indeed, a pushout. Now, let θ : Y2 → W be a

morphism in C such that

θ ◦ (β1 ◦ f1) = θ ◦ (β2 ◦ f2) .

We shall prove the following equalities

θ ◦ β1 = θ ◦ β2 and θ ◦ g1 = θ ◦ g2 .

Indeed, by hypothesis the couples (f1, f2) and (α1, α2) are reflexive, then there are two

morphisms s : X2 → X1 and t : Y1 → X1, such that

f1 ◦ s = f2 ◦ s = id and α1 ◦ t = α2 ◦ t = id .
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Hence, we have,

θ ◦ β1 = θ ◦ β1 ◦ (f1 ◦ s)

= (θ ◦ β1 ◦ f1) ◦ s

= (θ ◦ β2 ◦ f2) ◦ s

= θ ◦ β2 ◦ (f2 ◦ s)

= θ ◦ β2 ,

thus θ ◦ β1 = θ ◦ β2. Similarly, one has,

θ ◦ g1 = θ ◦ g1 ◦ (α1 ◦ t)

= (θ ◦ g1 ◦ α1) ◦ t

= (θ ◦ g2 ◦ α2) ◦ t

= θ ◦ g2 ◦ (α2 ◦ t)

= θ ◦ g2 ,

so that θ◦β1 = θ◦β2. By the universal property of coequalizer, there are two morphisms

δ : Y3 →W and ε : 2→W such that the following diagram

Y2

θ

  @@@@@@@@@@@@@@

β3

��

g3 // Y3

δ

��
Z2 ε

//W

(2.8)

is commutative. Hence by the universal property of pushout, there is a morphism

φ : Z3 →W together with a commutative diagram

Y2
g3 //

β3

��

Y3

γ3

�� δ

��

Z1
h3

//

ε

--

Z3

φ

  
W

(2.9)

To conclude that (2.5) is a coequalizer, it remains to prove that (γ3◦g3)◦φ = θ. Indeed,

one has

φ ◦ (γ3 ◦ g3) = (φ ◦ γ3) ◦ g3

= δ ◦ g3 by diagram (2.9)

= θ by diagram (2.8) .
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This completes the proof.

Lemma 2.2.10. In the category of sets, reflexive coequalizers commute with finite

products.

Proof. Let

A
f1 //
f2

// B
α // X ,

C
g1 //
g2

// D
ei // Y ,

be two reflexive coequalizers in Sets. We shall prove that, induced diagram

A× C
f1×g1 //
f2×g2

// B ×D α×β // X × Y

is a coequalizer. In fact, for each index, let s : B → A and t : D → C be two common

section of the pair (f1, f2) and (g1, g2) respectively. Then, s× idC : B×C → A×C is a

common section of pair (f1 × idC , f2 × idC) and idC × t : A×C → A×D is a common

section of pair (idA×g1, idA×f2). On the other hand, we have a commutative diagram

A× C fi×idC //

idA×gj

��

B × C α×idC //

idB×gj

��

X × C

idX×gj

��
A×D fi×idD //

idA×β

��

B ×D α×idD //

idC×β

��

X ×D

idX×β

��
A× Y fi×idY // B1 × Y

α×idY // X × Y

for each index i = 1, 2. Moreover, since for any set Z, the functor −×Z is a left adjoint

to the functor HomSets(Z,−). Then −× Z preserves colimits in Sets, hence we get a

diagram
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A× C
f1×idC //
f2×idC

//

idA×g2

��

idA×g1

��

B × C α×idB //

idB×g2

��

idB×g1

��

X × C

idX×g2

��

idX×g1

��
A×D

f1×idD //
f2×idD

//

idA×β

��

B ×D α×idD //

idC×β

��

X ×D

idX×β

��
A× Y

f1×idY //
f2×idY

// B × Y α×idY // X × Y

in which the rows and columns are coequalizers. By the previous lemma, the diagonal

A× C
f1×g1 //
f2×g2

// B ×D α×β // X × Y

is also a coequalizer.

Lemma 2.2.11. Suppose that F ∈ Pre(C ) is a coequalizer of a diagram f, g : A ⇒ B

of radditive functors. If F is reflexive, then F is radditive.

Proof. It follows since reflexive coequalizers in the category of sets commute with finite

products (see previous lemma).

The Proposition 2.2.7 (f), allows us to give the following provisional definition (see

Definition 2.2.16 for a generalization of it).

Definition 2.2.12. Let {Xi}i∈I be a family of objects of C . We denote by

rad∐
i∈I

hXi

the coproduct in Rad(C ).

In the following proposition we shall prove that the forgetful functor ι from Rad(C )

to Pre(C ) has a left adjoint functor denoted by `rad, which plays the role of sheafification

functor.
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Proposition 2.2.13. The forgetful functor ι : Rad(C ) → Pre(C ) has a left adjoint

functor

`rad : Pre(C )→ Rad(C ) .

Moreover, for every radditive functor F on C , we have an isomorphism (`rad ◦ ι)(F ) '
F , i.e. we have an isomorphism of functors

`rad ◦ ι ' idRad(C ) .

Proof. We define a functor `rad : Pre(C ) → Rad(C ), as follows. Let F be an ob-

ject of Pre(C ). By Lemma 2.2.7 (f), Rad(C ) is closed under arbitrary coproduct of

representable functors; in particular, we consider the coproducts in Rad(C ),

rad∐
(p:U→V )∈C

rad∐
F (V )

hU and
rad∐
W∈C

rad∐
F (W )

hW .

We shall define two morphisms ρ1 and ρ2,

rad∐
(p:U→V )∈C

rad∐
F (V )

hU

ρ1 //

ρ2

//

rad∐
W∈C

rad∐
F (W )

hW ,

as follows. For each morphism p : U → V of C and each element f ∈ F (V ), we have

a morphism p∗ : hU → hV and an element F (p)(f) ∈ F (V ); hence, we consider the

composites

hU
p∗→ hV →

rad∐
W∈C

rad∐
F (W )

hW ,

then, we define ρ1 as the universal morphism induced by these morphism as follows. On

the other hand, we have the restriction morphism F (p) : F (V )→ F (U), so F (p)(f) ∈
F (U), hence, we consider the canonical morphisms

hU →
rad∐
W∈C

rad∐
F (W )

hW ,

corresponding to the pair (U,F (p)(f)) in the set of indices of the above coproduct.

Then, we define ρ2 as the universal morphism induced by these morphisms. We define

`rad(F ) to be the coequalizer

`rad(F ) :=coeq(ρ1, ρ2)

in Pre(C ). We claim that `rad(F ) is a reflexive coequalizer. First of all, we define a

morphism

s :

rad∐
W∈C

rad∐
F (W )

hW →
rad∐

(p:U→V )∈C

rad∐
F (V )

hU ,

81



as follows. For every object W of C and every f ∈ F (W ), we have a morphism

hW →
rad∐

(p:U→V )∈C

rad∐
F (V )

hU

corresponding to the index (id : W → W, f). Then we have ρ1 ◦ s = ρ2 ◦ s = id, which

proves our claim. Hence, by Lemma 2.2.11, `rad(F ) is radditive. It remains to show an

isomorphism

HomRad(C )(`rad(F ), G) ' HomPre(C )(F,G) .

Indeed, by the universal property of coequalizer, to give a morphism `rad(F ) → G in

Rad(C ) is the same as giving a diagram

rad∐
(p:U→V )∈C

rad∐
F (V )

hU

ρ1 //

ρ2

//

rad∐
W∈C

rad∐
F (W )

hW
φ // G ,

such that φ ◦ ρ1 = φ ◦ ρ2. Since G is an object of Rad(C ), by the universal property

of

rad∐
, the morphism φ corresponds to morphisms φW (f) : hW → G, for all objects

W ∈ C and all elements f ∈ F (W ). By the construction of ρ1 and ρ2, to give the

above diagram is the same as giving, for every morphism p : U → V and every section

f ∈ F (V ), a commutative diagram

hV

φV (f)

��@@@@@@@@@@@@@@

hU

p∗

>>}}}}}}}}}}}}}}

id

  AAAAAAAAAAAAAA G

hU

φU (F (p)(f))

??~~~~~~~~~~~~~~

For each object W ∈ C and each element f ∈ F (W ), let us denote by ϕW (f) the

element of G(W ) corresponding to morphism φW (f) : hW → G by Yoneda’s lemma.

Then, the commutativity of the previous square is paraphrased in the following equality

G(p)(ϕV (f)) = ϕU (F (p)(f)) ,

for every p : U → V and every f ∈ F (V ). In other words, it is the same as giving a

collection of morphisms ϕW : F (W )→ G(W ) defined by f 7→ ϕW (f), for every object

W ∈ C , such that there is a commutative square

F (V )

F (p)

��

ϕV // G(V )

G(p)

��
F (U) ϕU

// G(U)
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for every morphism p : U → V in C . But it means that, the collection of morphisms

ϕW : F (W ) → G(W ), for W ∈ C , defines a morphism of presheaves ϕ : F → G.

We have proved that, to give a morphism `rad(F ) → G in Rad(C ) is the same as

giving a morphism F → G in Pre(C ), which proves the required adjunction. Finally,

if F is a radditive functor, then the canonical morphism
rad∐
W∈C

rad∐
F (W )

hW → F induces a

coequalizer diagram

rad∐
(p:U→V )∈C

rad∐
F (V )

hU

ρ1 //

ρ2

//

rad∐
W∈C

rad∐
F (W )

hW // F

in Pre(C ). Therefore, we get a functorial isomorphism (`rad ◦ ι)(F ) ' F .

Definition 2.2.14. The functor `rad : Pre(C ) → Rad(C ) is called radditivization

functor. If F is a presheaf on C , then `rad(F ) is called radditivization of F .

Proposition 2.2.15. The category Rad(C ) is complete and cocomplete.

Proof. Let Φ : J → Rad(C ) be a functor and we recall that ι denotes the forgetful

functor Rad(C ) → Pre(C ). By Proposition 2.2.13, we have a isomorphism `rad ◦ ι '
idRad(C ), hence, we get an isomorphism `rad ◦ ι ◦ Φ ' Φ. Moreover, since `rad is left

adjoint, it commutes with colimits, then we have

colim (`rad ◦ ι ◦ Φ) ' `rad(colim (ι ◦ Φ)) .

Then, the isomorphism `rad ◦ ι ◦ Φ ' Φ allows us to define colim Φ as the object

`rad(colim (ι ◦ Φ)) of Rad(C ).

If {Xi}i∈I is a family of objects of C , then

`rad(
∐
i∈I

hXi)

is the coproduct in Rad(C ) of the objects `rad(hXi) ' hXi for all i ∈ I. Thus the

following definition generalizes the Definition 2.2.12.

Definition 2.2.16. Let {Fi}i∈I be a family of objects in Rad(C ). We denote

rad∐
i∈I

Fi :=`rad

(∐
i∈I

Fi

)
,

where
∐
i∈I Fi is the coproduct in Pre(C ).
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Simplicial structure

Here, we describe the simplicial structure of the category of simplicial radditive functors,

see Proposition 2.2.25.

Definition 2.2.17. We say that a simplicial set K is finite, if for each n ∈ N, the set

Kn is finite.

Definition 2.2.18. For an object U of C and a finite simplicial set K, we define U⊗K
to be the simplicial object in ∆opC such that

(U ⊗K)n :=U ⊗Kn ,

for all n ∈ N, and the face and degeneracy morphism of U ⊗ K are induced by the

face and degeneracy morphism of K. Observe that U ⊗K is functorial in U and in K.

Notice that this definition is weaker than the Definition 1.2.14.

Example 2.2.19. For every object X in a category C with finite coproducts, we have

X ⊗∆[0] = X and X ⊗ ∂∆[1] = X qX, as object in ∆opC .

Lemma 2.2.20. Let X be an object in a category C with finite coproducts. For couple

of termwise finite simplicial sets K and L, we have

X ⊗ (K × L) = (X ⊗K)⊗ L .

Proof. For every n ∈ N, we have

(X ⊗ (K × L))n =
∐

Kn×Ln

X =
∐
Ln

(∐
Kn

X

)
=
∐
Ln

(X ⊗K)n = ((X ⊗K)⊗ L)n .

This proves that (X ⊗ (K × L))n = ((X ⊗K)⊗ L)n for all n ∈ N.

Remark 2.2.21. Considering the embedding h : C → Rad(C ), we get an embedding

∆oph : ∆opC → ∆opRad(C ) .

Thus, for an object U of C and a finite simplicial set K, the product U ⊗ K can be

considered as an object of ∆opRad(C ).

The following definition generalizes the previous definition.

Definition 2.2.22. For every object X of ∆opRad(C ) and for every simplicial set K,

we define the product X ⊗K to be the functor

X ⊗K : ∆op → Rad(C )

given by [n] 7→
rad∐
Kn

Xn, where
rad∐

is the coproduct in Rad(C ) (see Definition 2.2.16).

We have a bifunctor

−⊗− : ∆opRad(C )×∆opSets→ ∆opRad(C )

defined by (X ,K) 7→X ⊗K.

84



Definition 2.2.23. Let X and Y be two objects in ∆opRad(C ). We define a simplicial

set Map rad(X ,Y ) as the functor ∆op → Sets given by

[n] 7→ Hom∆opRad(C )(X ⊗∆[n],Y ) .

Definition 2.2.24. For every object X of ∆opRad(C ) and for every simplicial set K,

we define a simplicial radditive functor Hom⊗(K,X ) as the functor C op → ∆opSets

given by

U 7→ Map (K,X (U)) ,

where Map (−,−) is the function complex in ∆opSets. We have a bifunctor

Hom⊗(−,−) : ∆opSets×∆opRad(C )→ ∆opRad(C )

defined by (K,X ) 7→ Hom⊗(K,X ).

Proposition 2.2.25. The category ∆opRad(C ) together with the bifunctors −⊗− and

Map rad(−,−) and Hom⊗(K,X ) of definitions 2.2.22, 2.2.23 and 2.2.24, is a simplicial

category.

Proof. By Proposition 2.2.15, the category Rad(C ) is complete and cocomplete. Since

Definition 2.2.21 is a particular case of Definition 1.2.14, the proposition follows from

Theorem 1.2.16.

Corollary 2.2.26. Let U be an object in C , let K be a finite simplicial set and let X

be a simplicial radditive functor on C . Then there is a natural bijection of sets:

Hom∆opRad(C )(U ⊗K,X ) ' Hom∆opSets(K,X (U)) .

Proof. Let f : U ⊗K → X be a morphism of simplicial radditive functors on C . Let

n be an integer. By definition, we have (U ⊗K)n = h∐
Kn

U which is a |Kn| copies of

U . By Yoneda’s lemma, we have a functorial bijection of sets

HomRad(C )(h(
∐
Kn

U),Xn) 'Xn(
∐
Kn

U) .

The morphism of radditive functors fn : (U ⊗ K)n → Xn corresponds to an element

of Xn(
∐
Kn

U), but since Xn is an radditive functor and Kn is a finite set, we have

Xn(
∐
Kn

U) =
∏
Kn

Xn(U). On the other hand, there is a bijection∏
Kn

Xn(U) ' HomSets(Kn,Xn(U)) .

Thus, a morphism fn : (U ⊗ K)n → Xn corresponds bijectively to an element of

HomSets(Kn,Xn(U)), and they are compatible the the face and degeneracy morphisms.

This gives the expected bijection.
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Corollary 2.2.27. Let U be an object of C . For every morphism i : K → L of finite

simplicial sets and every morphism p : X → Y of simplicial radditive functors, a

commutative diagram

U ⊗K

U⊗i

��

//X

p

��
U ⊗ L // Y

(2.10)

in ∆opRad(C ) corresponds biunivocally to a commutative diagram

K

i

��

//X (U)

p(U)

��
L // Y (U)

(2.11)

in ∆opSets.

Proof. It follows from corollary 2.2.26.

2.2.2 ∆-closed classes

If X is an object in ∆opC , then, by Definition 2.2.18, X ⊗∆[1] is a simplicial object

on C . By the same definition, we have X = X ⊗ ∆[0]. If i0, i1 : ∆[0] → ∆[1] are

the morphisms induced by the face morphisms ∂0, ∂1 : [0]→ [1], then i0, i1 induce two

canonical morphisms

idX ⊗ i0 : X → X ⊗∆[1] ,

idX ⊗ i1 : X → X ⊗∆[1] .
(2.12)

Definition 2.2.28. Let f, g : X → Y be two morphisms in ∆opC . A morphism

H : X ⊗∆[1]→ Y in ∆opC is called a homotopy from f to g, if there is a commutative

diagram

X

idX⊗i0

��

f

��
X ⊗∆[1]

H // Y

X

idX⊗i1

OO

g

AA
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Two morphisms f, g : X → Y in ∆opC are called homotopic, if there is a natural n and

two families of morphisms

{fi : X → Y | i = 0, . . . , n} and {Hi : X ⊗∆[1]→ Y | i = 1, . . . , n} .

such that f0 = f , fn = g, and for each i = 1, . . . , n, the morphism Hi is a homotopy

from fi−1 to fi.

Definition 2.2.29. A morphism f : X → Y in ∆opC is called a homotopy equivalence,

if there exists a morphism g : Y → X in ∆opC such that the compositions g ◦ f is

homotopic to idX and f ◦ g is homotopic to idY .

Definition 2.2.30. A class of morphisms E of ∆opC is called ∆-closed, if it it satisfies

the following axioms:

(1) E contains all homotopy equivalences in ∆opC .

(2) E has the 2-out-of-3 property.

(3) If f : X → X ′ is a morphism of bisimplicial objects in ∆op∆opC , such that for

every integer n ≥ 0, either f([n],−) or f(−, [n]) belongs to E, then the diagonal

morphism ∆(f) belongs to E.

Definition 2.2.31. A ∆-closed class is called (∆,q<∞)-closed if it is closed under finite

coproducts. It is called ∆̄-closed if it is closed under filtered colimits. For any class

of morphisms S in ∆opC , we denote by cl∆(S) the smallest ∆-closed class containing

S. Similarly, we denote by cl∆̄(S) the smallest ∆̄-closed class containing a class S of

morphisms of ∆opC .

Lemma 2.2.32. The class of weak equivalences in ∆opSets coincides with cl∆(∅). In

particular, it is ∆̄-closed.

Proof. See [18] Lemma 5.3.1.

Lemma 2.2.33. Let F : C → C ′ be a functor preserving filtered colimits. Then for

any class S of morphism in ∆opC , we have

F (cl∆̄(S)) ⊂ cl∆̄(F (S)) .

Proof. See Lemma 2.20 of [41].

Proposition 2.2.34. The class of projective weak equivalences of simplicial radditive

functors is ∆̄-closed, and it contains ∆̄(∅).

Proof. It follows in view of Lemma 2.2.32 and Lemma and 2.2.33 applied to the functor

of sections ∆opRad(C ) → ∆opSets defined for every object U of C to be the functor

X 7→X (U).
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Corollary 2.2.35. Let X be an object of ∆opRad(C ). Then, for every weak equiva-

lence of simplicial sets K → L, then induced morphism X ⊗K →X ⊗L is a projective

equivalence.

Proof. If follows from the previous proposition.

Let S be a class of morphisms in ∆opC . We denote by SqidC the class of morphisms

of the form f q idX , for f ∈ S and X ∈ ob (C ).

Proposition 2.2.36. Let S be a class of morphisms in ∆opC . Then the class cl∆(Sq
idC ) is closed under coproducts.

Proof. Let f : X → Y and f ′ : X ′ → Y ′ be two morphism in ∆opC . From the following

commutative diagram

∅

��

// X ′

��

f ′ // Y ′

��
X

f

��

// X qX ′

fqf ′

%%

fqidX′

��

idXqf ′ // X q Y ′

fqidY ′

��
Y // Y qX ′

idY qf ′
// Y q Y ′

one gets, in particular, the equality

f q f ′ = (idY q f ′) ◦ (f q idX′) .

Then, it is enough to verify that for a morphism f in cl∆(S q idC ) and an object X

in ∆opC , we have f q idX ∈ cl∆(S q idC ). We can simplify the problem even more,

as follows. Notice that, if f in cl∆(S q idC ) and if X is an object in ∆opC , then the

coproduct f q idX is the diagonal of a morphism of bisimplicial objects in ∆op∆opC

whose arrows or columns are of the form f q idA, where A is an object of C viewed

as a constant simplicial object in ∆op. Indeed, the morphism of bisimplicial objects

given by ([i], [j]) 7→ fi q idXj has columns of the form f q idXj and has f q idX as its
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diagonal, as we can observe it in the following diagram

f0 q idX0

��

// f0 q idX1

��

//oo f0 q idX2

//

��

oo · · ·oo

f1 q idX0

��

//

OO

f1 q idX1

��

OO

oo // f1 q idX2

��

//

OO

oo · · ·oo

f2 q idX0

��

//

OO

f2 q idX1

��

//oo

OO

f2 q idX2

��

//

OO

oo · · ·oo

...

OO

...

OO

...

OO

. . .

where the vertical and horizontal arrows mean the face and degeneracy morphisms.

Thus, it is enough to show that, for every morphism f in cl∆(Sq idC ) and every object

A in C , one has f q id ∈ cl∆(S q idC ), but it follows from the inclusions

cl∆(S q idC )q idA ⊂ cl∆(S q idC )q idA ,

for all object A in C .

Corollary 2.2.37. For any class of morphisms S in ∆opC , we have

cl∆,q<∞(S) = cl∆(S q idC ) .

In consequence, we have

cl∆,q<∞(∅) = cl∆(∅) .

Proof. Let S be a class of morphisms in ∆opC . By definition, cl∆(Sq idC ) is contained

in cl∆,q<∞(S q idC ). Reciprocally, by Proposition 2.2.36, the class cl∆(S q idC ) is

(∆,q<∞)-closed, then cl∆,q<∞(S q idC ) is contained in cl∆(S q idC ). Hence, we get

the following equality

cl∆,q<∞(S q idC ) = cl∆(S q idC ) .

Since all identity morphisms are, in particular, homotopy equivalences, they are in

cl∆,q<∞(S), then S q idC is contained in cl∆,q<∞(S), hence we deduce the equality

cl∆,q<∞(S q idC ) = cl∆,q<∞(S) .

Thus, we get cl∆,q<∞(S) = cl∆(S q idC ). In particular, we have

cl∆,q<∞(∅) = cl∆(idC ) ,

and since cl∆(∅) contains all identity morphisms, we have cl∆(idC ) = cl∆(∅), which

implies that cl∆,q<∞(∅) = cl∆(∅).
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Definition 2.2.38. Let C be a category with finite coproducts as before.

(1) A morphism f : A→ X in C is called coprojection, if there exists an object Y of

C such that f is isomorphic the canonical morphism A→ Aq Y .

(2) A morphism f : A → X in ∆opC is called termwise coprojection, if for each

n ∈ N, the morphism fn : An → Xn is a coprojection.

Lemma 2.2.39. We have the following assertions:

(a) For every morphism f : A→ B and object Y in C , the diagram

A

f

��

iA // Aq Y

gqidY

��
B

iB
// B q Y

where the horizontal morphisms are the canonical ones, is a cocartesian square.

In consequence, coprojections are stable under pushout.

(b) Let

A

f

��

// X

B

be a diagram in ∆opC , where f is a termwise coprojection. Then the pushout

of this diagram exists. In consequence, termwise coprojections are stable under

pushout.

(c) The coproduct of a family of termwise coprojections in ∆opC , if it exists, is a

termwise coprojection.

Proof. We have a diagram

∅

��

// Y

iY

��
A

g

��

iA // Aq Y

gqidY

��
B

iB
// B q Y

in which the upper square and the big square are cocartesian, thus the lower square is

cocartesian, thus we have (a). Item (b) follows from (a). Item (c) is an easy exercise.
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Lemma 2.2.40. Suppose that C has small coproducts. Then, the transfinite composi-

tion of termwise coprojections in ∆opC is also a termwise coprojection.

Proof. Notice that it is enough to show that the transfinite composition of coprojections

in C is a coprojection. Indeed, let α be a limit ordinal an let

X0 → X1 → · · · → Xβ → · · · (β < α) ,

be an α-sequence such that each Xβ → Xβ+1 is a coprojection. By transfinite induction,

we can express each Xβ as a coproduct of the form
∐
γ<β X

′
γ with X ′0 = X0. We deduce

that Xα is isomorphic to
∐
γ<αX

′
γ and the canonical morphism X0 →

∐
γ<αX

′
γ is the

transfinite composition of this α-sequence. This proves the lemma.

Definition 2.2.41. A commutative square in ∆opC is called an elementary pushout

square, if it is isomorphic to the pushout square of the form

B

��

e // Y

��
A // X

in ∆opC , where e is a termwise coprojection.

Remark 2.2.42. Let

B

��

// Y

A

be a diagram in C . Since we have a canonical functor Const : C → ∆opC , we can

consider the above square as a square in ∆opC . Notice that the inclusion of simplicial

sets ∂∆[1] ↪→ ∆[1] induces a morphism

B qB = B ⊗ ∂∆[1] ↪→ B ⊗∆[1]

in ∆opC . On the other hand, the morphisms B → A and B → Y viewed as a morphism

in ∆opC induce a canonical morphism

B qB → B q Y

in ∆opC . Thus, we have a diagram

B qB

��

// B ⊗∆[1]

Aq Y

(2.13)

in ∆opC .
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Remark 2.2.43. Let

Q :

B

��

// Y

p

��
A

j
// X

(2.14)

be a commutative in C . The morphism B → X coming from the above diagram,

induces, by the universal property of coproduct, a morphism∐
∆[1]n

B → X

in C , for all n ∈ N. Since (B⊗∆[1])n is, by definition, equal to the coproduct
∐

∆[1]n
B,

we get a morphism

B ⊗∆[1]→ X

in ∆opC . On the other hand, the morphisms A→ X and Y → X induces a morphism

Aq Y → X

in ∆opC . Thus, we get a diagram

B qB

��

// B ⊗∆[1]

��
Aq Y // X

(2.15)

Definition 2.2.44. For every commutative squareQ, as in (2.14), in C , we shall denote

by KQ the pushout of the diagram (2.13). In view of the commutative square (2.15),

we have a universal morphism KQ → X .

Example 2.2.45. Let f : X → Y be a morphism in C . If we consider the diagram

Q :

X

idX

��

f // Y

idY

��
X

f
// Y

then KQ is the cylinder Cyl(f) of f , where Cyl(f) is a pushout of the diagram

X

��

f // Y

X ⊗∆[1]
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Indeed, it follows since from the following commutative diagram

X

f

��

// X qX //

idqf

��

X ⊗∆[1]

��
Y // X q Y // KQ

in which each square is a pushout.

Lemma 2.2.46. Let f : X → Y be a morphism in C . The canonical morphisms

ϕ : Y → Cyl(f) and ψ : Cyl(f)→ Y are each other inverses homotopy equivalences.

Proof. We recall that ψ : Cyl(f) → Y is defined to be the universal morphism in the

following pushout diagram

X
f //

��

Y

ϕ

�� idY

��

X ⊗∆[1] //

--

Cyl(f)

ψ

!!
Y

In particular, we get that the composite Y
ψ→ Cyl(f)

ϕ→ Y is the identity. On the other

hand, the composite Cyl(f)
ϕ→ Y

ψ→ Cyl(f) is induced by the composite

∆[1]→ ∆[0]
i0→ ∆[1] ,

which is homotopic to the identity ∆[1]→ ∆[1].

Lemma 2.2.47. We have the following:

(a) For every diagram

Q :

B

��

// Y

p

��
A

j
// X

in C , the morphism Aq Y → KQ is a termwise coprojection.

(b) For every morphism f : X → Y in C , the canonical morphism ϕ : Y → Cyl(f) is

a termwise coprojection.
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Proof. The proof follows without difficulty from the definitions.

Lemma 2.2.48. Let

Q :

B

��

// Y

p

��
A e

// X

be an elementary pushout square in ∆opC . Then the canonical morphism pQ : KQ → X

is in cl∆(∅).

Proof. For every i ∈ N, let Qi be the i-th term of Q,

Qi :

Bi

��

// Yi

pi

��
Ai ei

// Xi

in C . Then, for each i ∈ N, we have a canonical morphism pQi : KQi → Xi in ∆opC ,

deduced from the pushout

Bi qBi

��

// Bi ⊗∆[1]

��
Ai q Yi // KQi

Let B � ∆[1] the bisimplicial object given by ([i], [j]) 7→
∐

∆[1]j
Bi. Let us consider a

cocartesian square,

B qB

��

// B � ∆[1]

��
Aq Y // K

in ∆op∆opC . This square induces a diagram

B0 qB0

��

//

##FFFFFFFFFF B1 qB1oo

��

//

##FFFFFFFFFF B2 qB2oo
//

��

##FFFFFFFFFF · · ·oo

B0 ⊗∆[1]

��

//
B1 ⊗∆[1]oo

//

��

B2 ⊗∆[1]oo

��

// · · ·oo

A0 q Y0
//

##FFFFFFFFFFF A1 q Y1oo
//

##FFFFFFFFFFF A2 q Y2oo
//

##FFFFFFFFFFF · · ·oo

KQ0

//
KQ1oo

//
KQ2oo

// · · ·oo
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where the horizontal arrows are the face and degeneracy morphisms. We can deduce

that K has the simplicial objects KQi for i ∈ N, as its arrows (or columns). Since the

simplicial object B⊗∆[1] is the diagonal of the bisimplicial object B�∆[1], we deduce

that KQ is also the diagonal of the bisimplicial object K, because a pushout in ∆opC

(if it exists) is a termwise pushout. Therefore, it is enough to prove the lemma for a

square of the form

Q :

B

��

eB // B qX

��
A eA

// AqX

in C . Notice that Q can be decompose as a coproduct Q = Q1 q Q2, where Q1 and

Q2 are of the form

Q1 :

B

��

idB // B

��
A

idA
// A

, Q2 :

∅

��

// X

idX

��
∅ // X

moreover, we have KQ = KQ1qQ2 = KQ1 qKQ2 . Hence, by Corollary 2.2.37, cl∆(∅) is

closed under finite coproducts, so it is enough enough to prove the lemma for squares

of the form Q1 and Q2, but one can notice that they are both, up to transposition, of

the form

Q′ :

X

idX

��

f // Y

idY

��
X

f
// Y

By Example 2.2.45, KQ′ coincide with the cone of f , hence by Lemma 2.2.46, it follows

that pQ′ : cone(f)→ Y is a simplicial homotopy equivalence, therefore pQ′ is in cl∆(∅).
This finishes the proof.

The following definition is a particular case of Definition 2.2.38.

Definition 2.2.49. A morphism f : A → X in Rad(C ) is called coprojection, if there

exists an object Y of Rad(C ) such that f is isomorphic the canonical morphism from

A to A
rad
q Y . A morphism f : A → X in ∆opRad(C ) is called termwise coprojection,

if for each integer n ≥ 0, the morphism fn : An →Xn is a coprojection.

Corollary 2.2.50. Let I be a set of morphisms in ∆opRad(C ) consisting of termwise

coprojections. Then any countable transfinite composition of pushouts of coproducts of

elements of I, is a termwise coprojection.
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Proof. Let

X0 →X1 → · · · →Xn →Xn+1 → · · · (2.16)

be a ω-sequence such that each morphism Xn → Xn+1 is a pushout of coproducts

of elements of I. Since I consists of termwise coprojections, by Lemma 2.2.39, the

coproduct of elements of I is a termwise coprojection, hence by the same lemma (b),

the morphism Xn → Xn+1 is a termwise coprojection for each n < ω. Finally, by

Lemma 2.2.40, the we conclude the transfinite composition of (2.16) is a termwise

coprojection.

2.2.3 Model structure on simplicial radditive functors

In this section we shall prove that if C is a category with finite coproducts, then

category of simplicial radditive functors ∆opRad(C ) is provided of a projective model

structure (see Theorem 2.2.59).

Definition 2.2.51. Let f : X → Y be a morphism in ∆opRad(C ). The morphism f

is:

(1) a weak equivalence in ∆opRad(C ), if f is an object-wise weak equivalence, that is,

for every object U in C , the morphism of simplicial sets f(U) : X (U)→ Y (U) is

a weak equivalence in ∆opSets. We denote by Wrad the class of weak equivalences

in ∆opRad(C ).

(2) a fibration in ∆opRad(C ), if f is an objectwise fibration, that is, for every object

U in C , the morphism of simplicial sets f(U) : X (U) → Y (U) is a fibration in

∆opSets.

(3) a cofibration in ∆opRad(C ), if f has the left lifting property with respect to weak

equivalences and fibrations in ∆opRad(C ).

In view of Remark 2.2.21, we define the following sets of morphisms in ∆opRad(C ):

Irad := {U ⊗ ∂∆[n]→ U ⊗∆[n] |U ∈ C , n ≥ 0} ,

Jrad := {U ⊗ Λr[n]→ U ⊗∆[n] |U ∈ C , n ≥ 0, 0 ≤ r ≤ n} .

In Theorem 2.2.59, we shall prove that ∆opRad(C ) is a cofibrantly generated model

category in which Irad is the class of generating cofibrations and Jrad is the class of

generating trivial cofibrations. Let I be the set of simplicial sets ∂∆[n] → ∆[n] for

n ≥ 0. Let J be the set of simplicial sets Λr[n]→ ∆[n] for n ≥ 0 and 0 ≤ r ≤ n.

Lemma 2.2.52. Every object in ∆opRad(C ) is small. In consequence, Irad and Jrad

permit the small object argument.

96



Proof. Let A be an object of ∆opRad(C ). Let κ be the cardinal of the set,

S :=
∐

(U,n)∈obj (C )×N

An(U) .

We shall prove that A is κ-small relative to the class of all morphisms in ∆opRad(C ).

Indeed, let λ be a κ-filtered ordinal and let X : λ → ∆opRad(C ) be a λ-sequence. It

is not difficult to see that the canonical function of sets

θ : colim γ<λHom∆opPre(C )(A ,Xγ)→ Hom∆opPre(C ) (A , colim γ<λXγ)

is bijective. Considering that X : λ → ∆opRad(C ) is a filtered functor, Lemma 2.2.7

(d) asserts that colim γ<λXγ is an object of ∆opRad(C ); then, we have

Hom∆opRad(C ) (A , colim β<λXβ) = Hom∆opPre(C ) (A , colim β<λXβ) ,

because ∆opRad(C ) is a full subcategory of ∆opPre(C ). Hence we have a commutative

diagram,

colim β<λHom∆opRad(C )(A ,Xβ) // Hom∆opRad(C ) (A , colim β<λXβ)

colim β<λHom∆opPre(C )(A ,Xβ)
θ

// Hom∆opPre(C ) (A , colim β<λ(Xβ))

Since θ is bijective, the top arrow is bijective, as required.

Lemma 2.2.53. For any object U ∈ C and every finite simplicial set K, the object

U ⊗K of ∆opRad(C ) is finite.

Proof. Let us fix an object U ∈ C and a finite simplicial set K. Since K is finite, there

is a finite cardinal such that K is κ-small relative to all morphisms of ∆opSets. We

claim that U ⊗K is κ-small relative to all morphisms in ∆opRad(C ). Indeed, let λ be

a κ -filtered ordinal and let

X0 →X1 → · · · →Xβ → · · · (β < λ)

be a λ-sequence of simplicial radditive functors. By Lemma 2.2.7 (e), filtered colimits

in ∆opRad(C ) comes from the colimits in ∆opPre(C ), hence we obtain a λ-sequence of

simplicial sets,

X0(U)→X1(U)→ · · · →Xβ(U)→ · · · (β < λ) .

We have a commutative diagram

colim β<λHom∆opRad(C )(U ⊗K,Xβ)

��

// Hom∆opRad(C )

(
U ⊗K, colim β<λXβ

)

��

colim β<λHom∆opSets(K,Xβ(U)) // Hom∆opSets

(
K, colim β<λXβ(U)

)
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where the vertical arrows are bijections deduced by Corollary 2.2.26. Since K is κ-

small relative to all morphisms of ∆opSets, the horizontal arrow at the bottom of the

preceding diagram is bijective, hence the top arrow is so, finishing thus the proof.

The following corollary is a strong version of the small object argument, as we get

that every morphism has a functorial factorization in a morphism having the right lifting

property and a morphism that is a countable transfinite composition of coproducts of

certain morphisms.

Corollary 2.2.54. There exist two functorial factorizations (α, β) and (γ, δ) on ∆opRad(C )

such that for every morphism f in ∆opRad(C , we can write

f = β(f) ◦ α(f) ,

where α(f) is a countable transfinite composition of pushouts of coproducts of elements

of Irad and β(f) in Irad-inj, and

f = δ(f) ◦ γ(f) ,

where γ(f) is a countable transfinite composition of pushouts of coproducts of elements

of Jrad and δ(f) in Jrad-inj,

Proof. It is a consequence of the previous lemma.

Definition 2.2.55. We denote by C̄ the full subcategory of small coproducts of objects

of the form hX in Rad(C ) for objects X in C .

Corollary 2.2.56. Let Q be a cofibrant replacement functor of category ∆opRad(C )

with respect to the projective model structure. Then Q takes values in ∆opC̄ .

Proof. It is a consequence of the previous corollary.

Lemma 2.2.57. We have the following assertions:

(a) A morphism is a fibration in ∆opRad(C ) if and only if it is in Jrad-inj.

(b) A morphism is a fibration and a weak equivalence in ∆opRad(C ) if and only if it

is in Irad-inj.

(c) A morphism is a cofibration in ∆opRad(C ) if and only if it is in Irad-cof.

Proof. (a). By Corollary 2.2.26, a commutative diagram

U ⊗ Λr[n]

��

//X

p

��
U ⊗∆[n] // Y
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corresponds biunivocally to a commutative diagram

∂Λr[n]

��

//X (U)

p(U)

��
∆[n] // Y (U)

Then, we observe that p in Jrad-inj if and only if the morphism p(U) is in J-inj for

every object U ∈ C , i.e. p in Jrad-inj if and only if the morphism p is a object-wise

fibration.

(b). Similarly, by Corollary 2.2.26, a commutative diagram

U ⊗ ∂∆[n]

��

//X

p

��
U ⊗∆[n] // Y

corresponds biunivocally to a commutative diagram

∂∆[n]

��

//X (U)

p(U)

��
∆[n] // Y (U)

Then, we observe that p in Irad-inj if and only if the morphism p(U) is in I-inj for every

object U ∈ C , i.e. p in Irad-inj if and only if the morphism p is both an object-wise

fibration and an object-wise weak equivalence.

(c). Since Irad-cof = (Irad-inj)-proj and cofibrations in ∆opRad(C ) have the left

lifting property with respect to both fibrations and weak equivalences, we deduce from

(b), that a morphism is a cofibration in ∆opRad(C ) if and only if it is in Irad-cof.

Lemma 2.2.58. We have Jrad-cell ⊂Wrad ∩ I-cof.

Proof. It is an easy exercise to show that Jrad-cell is contained in I-cof. Hence, it is

enough to show the inclusion Jrad-cell ⊂ I-cof, but it follows by applying Proposition

2.2.34 in a suitable way.

Theorem 2.2.59 (Voevodsky). The weak equivalences, fibrations and cofibrations given

in Definition 2.2.51 provides a cofibrantly generated model structure on ∆opRad(C ) in

which Irad is the class of generating cofibrations and Jrad is the class of generating

trivial cofibrations.
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Proof. We shall verify that ∆opRad(C ) satisfies the hypothesis of the Recognition the-

orem (Th. 1.1.51). Indeed, by Proposition 2.2.15, the category Rad(C ) is complete and

cocomplete, then the category ∆opRad(C ) is so. Since weak equivalences and fibrations

in Rad(C ) are defined to be object-wise weak equivalences and fibrations respectively,

the 2-out-of-3 and the retracts axioms for ∆opRad(C ) follow from the 2-out-of-3 and

the retracts axioms for simplicial sets. Since cofibrations in Rad(C ) is defined by using

the left lifting property, the retracts axiom for cofibrations follows from Lemma 1.1.43

(b). By Lemma 2.2.52, the sets Irad and Irad permit the small object argument. We

recall that Wrad denotes the class of weak equivalences on ∆opRad(C ). By Lemma

2.2.57 (a) and (b), we deduce that Irad-inj = Wrad∩Jrad-inj. Finally, by Lemma 2.2.58,

we have Jrad-cell ⊂ Wrad ∩ I-cof, which completes the hypothesis of the Recognition

theorem (see Theorem 1.1.51).

Proposition 2.2.60. Suppose that f : X → Y be a projective cofibration in ∆opRad(C ).

Then there exist two morphisms s : Y → A and p : A → Y such that, for each index

n ≥ 0, the term (s ◦ f)n has the form Xn → Xn q Fn, where Fn is a coproduct of

representable radditive functors, and f is a retract of s ◦ f which fixes X , that is, we

have a commutative diagram

X

f

��

X

s◦f

��

X

f

��
Y s

// A p
// Y

where the horizontal composites are the identities.

Proof. Similarly as the Corollary 1.1.47, by Corollary 2.2.54, we get a factorization

f = p◦g, where g is a countable transfinite composition of coproducts of elements of Irad

and p in Irad-inj. By Lemma 2.2.57, the morphism p is trivial fibration in ∆opRad(C ).

Then f has the left lifting property with respect to p, and so by the retract argument,

there exists a morphism s : Y → A such that we have a commutative diagram

X

f

��

X

g

��

X

f

��
Y s

// A p
// Y

such that p ◦ s = id. In particular, we have g = s ◦ f . It remains to show that, for each

integer n ≥ 0, the term (s ◦ f)n has the form Xn → Xn q Fn. Indeed, suppose that g

is a transfinite composition of the ω-sequence

X0 →X1 → · · · →Xn → · · · (n < ω) ,
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such that for every i ∈ N, the morphism Xi →Xi+1 is a pushout

rad∐
D∈S

U ⊗ ∂∆[m] //

��

Xi

��rad∐
D∈S

U ⊗ ∂∆[m] //Xi+1

and S is the set of diagrams

U ⊗ ∂∆[m] //

��

Xi

��
U ⊗ ∂∆[m] //Xi+1

for morphisms U ⊗ ∂∆[m] → U ⊗ ∆[m] in Irad. Notice that every morphism from

U ⊗ ∂∆[m] to U ⊗ ∆[m] in Irad is a termwise coprojection. By corollary 2.2.50, the

transfinite composition the above ω-sequence, which is g, is a termwise coprojection.

2.3 Simplicial Nisnevich sheaves

In this section, we study simplicial Nisnevich sheaves defined on an admissible category

of schemes [40, Appendix A].

2.3.1 Admissible categories

The category of smooth varieties is not good enough to study geometric symmetric

powers, as symmetric powers of a higher dimensional smooth variety have singularities.

This issue can be solved by considering admissible categories of schemes.

Let Sch/k be the category of schemes over k. For two k-schemes X and Y , we

write X × Y to mean the Cartesian product X ×Spec(k) Y . We also denote by X q Y
the disjoint union of X and Y , as schemes. We recall that the point Spec(k) is the

terminal object of Sch/k, whereas the empty scheme ∅ is its initial object. An étale

morphism is a flat and unramified morphism of schemes, see [28].

Definition 2.3.1. Let k be a field. A small full subcategory C of Sch/k is called

admissible 2, if it satisfies the following axioms:

2f -admissible in [40]
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(1) Spec(k) and A1 are objects in C ,

(2) C is closed under the product ×, that is, for any two objects X and Y of C , the

product X × Y is in C .

(3) C is closed under the coproduct q, that is, for any two objects X and Y of C ,

the coproduct X q Y is in C .

(4) If U is a k-scheme such that there is an étale morphism U → X with X is in C ,

then U is in C .

(5) If G is finite group acting on an object X of C , then the (categorical) quotient

X/G is in C .

Example 2.3.2. The following categories are admissible:

(1) The category of schemes of quasi-projective schemes over a field k.

(2) The category of normal quasi-projective schemes over a perfect field k.

(3) The category of normal quasi-affine schemes over a perfect field k.

Remark 2.3.3. By definition every admissible category of schemes over a field contains

the affine line A1, but it is not true that all admissible categories contain the projective

line P1 over a field. For example, the subcategory of normal quasi-affine schemes over

a perfect field is admissible, but the projective line P1 is not quasi-affine.

Nisnevich sheaves

Unless otherwise mentioned, C will be an admissible category, see Definition 2.3.1.

Definition 2.3.4. An elementary distinguished square in C is a Cartesian square of

the form

Q :

Y

��

// V

p

��
U

j
// X

(2.17)

where j is an open embedding and p is an étale morphism such that the induced

morphism p−1(X − U)red → (X − U)red of reduced schemes is an isomorphism.

Definition 2.3.5. A family of étale morphisms {fi : Ui → X}i∈I of C is a Nisnevich

covering if for every point3 x ∈ X there exists an index i ∈ I and a point y ∈ Ui such

that fi(y) = x and the corresponding morphism of residual fields k(x) → k(y) is an

isomorphism.

3 not necessarily a closed point.
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The Nisnevich topology on C can be described as the smallest Grothendieck topol-

ogy generated by families of the form {j : U → X, p : V → X} associated to elementary

distinguished squares of the form (2.17), see [42, page 1400]. We denote by CNis the

site consisting of C and the Nisnevich topology on it.

Proposition 2.3.6. A presheaf F on C is a sheaf in the Nisnevich topology if and only

if for each elementary distinguished square as (2.17), the square of sets

F (Q) :

F (X)

F (j)

��

F (p) // F (V )

��
F (U) // F (Y )

is Cartesian.

Proof. see [30, Prop. 14, page 96].

Terminology. Unless otherwise specified, S will be the category of sheaves on the

Nisnevich site CNis.

As representable functors are Nisnevich sheaves, we shall use the letter h to denote

the full embedding of C into S , so that we have a commutative triangle:

C

h
##GGGGGGGGGGGG

// Pre(C )

S

99sssssssssssss

The category S is complete and cocomplete, its terminal object is hSpec(k), and

filtered colimits of Nisnevich sheaves in the category of presheaves are Nisnevich sheaves.

Let {Fi}i∈I be a family of objects in S . The coproduct of this family in S is the

sheafification aNis

(∐
i∈I Fi

)
of the coproduct

∐
i∈I Fi in Pre(C ). We abusively denote

it by
∐
i∈I Fi if no confusion arises.

In the sequel, we shall consider the injective model structure on the category of

simplicial sheaves ∆opS , see Theorem 2.1.11, where the class of cofibrations is the class

of monomorphisms, a weak equivalence is a stalkwise weak equivalence and fibrations

are morphisms having the right lifting property with respect to trivial cofibrations.

Simplicial structure

We shall describe the simplicial structure on the category ∆opS . For a simplicial sheaf

X and a simplicial set K, we define the product X ×K to be the simplicial sheaf, such

that for every n ∈ N, its term (X ×K)n is defined to be the coproduct
∐
Kn

Xn in S .
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For a couple of sheaves (X ,Y ), the function complex Map (X ,Y ) is defined to be

the simplicial set which assigns an object [n] of ∆ to the set Hom∆opS (X ×∆[n],Y ) .

Then, for every pair of simplicial sheaves (X ,Y ) and every simplicial set K, one has

a natural bijection,

Hom∆opS (X ×K,Y ) ' Hom∆opSets (K,Map (X ,Y )) , (2.18)

which is functorial in X , Y and K.

For each object U of C , we denote by ∆U [0] the constant functor from ∆op to S

with value hU . Sometimes, we shall simply write hU instead of ∆U [0] if no confusion

arises. For each n ∈ N and each object U of C , we denote by ∆U [n] the simplicial sheaf

∆U [0]×∆[n]. Similarly, we denote by ∂∆U [n] the simplicial sheaf ∆U [0]× ∂∆[n].

Notice that Yoneda lemma provides an isomorphism Map (∆U [0],Y ) ' Y (U) for

every object U of C and every simplicial sheaf Y . Hence, replacing X by ∆U [0] in

(2.18), we obtain an isomorphism

Hom∆opS (∆U [0]×K,Y ) ' Hom∆opSets (K,Y (U)) . (2.19)

Example 2.3.7. Let X be a simplicial sheaf on CNis. If K ⊂ L is an inclusion

of simplicial sets, then the induced morphism from X × K to X × L is a termwise

coprojection (see Definition 2.2.38). Indeed, for each natural n, the n-simplex (X ×K)n

is equal to the coproduct of sheaves
∐
Kn

Xn, similarly, (X ×L)n is equal to
∐
Ln

Xn.

In view of the inclusion Kn ⊂ Ln, we have a canonical isomorphism

∐
Ln

Xn '

(∐
Kn

Xn

)
q

 ∐
Ln\Kn

Xn

 ,

which allow us to deduce that (X ×K)n → (X × L)n is a coprojection for all n ∈ N.

We recall that C+ denotes the full subcategory of the pointed category C∗ generated

by objects of the form X+ :=X q Spec(k), see page 5. We denote by S∗ the pointed

category of S . The symbols ∨ and ∧ denote, respectively, the coproduct and the smash

product in S∗. An elementary distinguished square in C+ is a square of the form

Q+ :

Y+

��

// V+

p+

��
U+ j+

// X+

(2.20)

where Q is an elementary distinguished square in C of the form (2.17). We denote

by C+,Nis the site consisting of C+ and the smallest Grothendieck topology generated

by the families of the form {j+ : U+ → X+, p+ : V+ → X+} which are associated to

elementary distinguished squares of the form (2.20).
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Lemma 2.3.8. The category Shv(C+,Nis) is equivalent to the pointed category S∗.

Proof. We consider the functor Φ: Rad(C+) → Rad(C )∗ defining an equivalence of

categories between Rad(C+) and Rad(C )∗, see proof of Lemma 2.2.6. The lemma

follows after noticing that for a radditive functor F in Rad(C+), we have that F is in

Shv(C+,Nis) if and only if Φ(F ) is in S∗.

Definition 2.3.9. We denote by H (CNis) the homotopy category of ∆opS localized

with respect to weak equivalences of the injective model structure. We write H∗(CNis)

for the homotopy category of ∆opS∗ localized with respect to weak equivalences, see

1.1.18.

Definition 2.3.10. A simplicial sheaf X in ∆opS is called A1-local if for any simplicial

sheaf Y , the map

pr∗1 : HomH (CNis)(Y ,X )→ HomH (CNis)(Y × A1,X ) ,

induced by the projection pr1 : Y × A1 → Y , is a bijection. A morphism of simplicial

sheaves f : X → Y is an A1-weak equivalence if for any A1-local fibrant sheaf Z , the

morphism of simplicial sets

f∗ : Map (Y ,Z )→ Map (X ,Z )

is a weak equivalence.

Definition 2.3.11. We denote by H (CNis,A1) the homotopy category of ∆opS lo-

calized with respect to A1-weak equivalences. We write H∗(CNis,A1) for the homotopy

category of ∆opS∗ localized with respect to A1-weak equivalences.

Example 2.3.12. The class of A1-weak equivalences in ∆opS coincides with the ∆̄-

class cl
∆̄

(WNis ∪ PA1) (see Definition 2.2.30), where WNis is the class of local equiva-

lences with respect to the Nisnevich topology and PA1 is the class of projections from

∆X [0] × ∆A1 [0] to ∆X [0], for X ∈ C (see [7, Th. 4, page 378]). Similarly, the class

of A1-weak equivalences in ∆opS∗ coincides with the class cl
∆̄

(WNis,+ ∪PA1,+), where

WNis,+ is the image of WNis through the functor which sends a simplicial sheaf X

to the pointed simplicial sheaf X+ and PA1,+ is the image of PA1 through the same

functor.

Remark 2.3.13. The category H (C+,Nis) is equivalent to the pointed homotopy cat-

egory H∗(CNis). Similarly, the category H (C+,Nis,A1) is equivalent to the pointed

homotopy category H∗(CNis,A1).

Definition 2.3.14. We denote by C̄ the full subcategory of small coproducts of objects

hX in S for objects X in C . Similarly, we denote by C̄ the full subcategory of small

coproducts of objects hX in S∗ for objects X in C .
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We define the following sets of morphisms of simplicial sheaves

Iproj := {∂∆U [n]→ ∆U [n] |U ∈ C , n ∈ N} . (2.21)

Notice that, by Example 2.3.7, the morphisms ∂∆U [n] → ∆U [n] are termwise copro-

jections in ∆opC̄ for all U ∈ C and n ∈ N. We define the following sets of morphisms

of pointed simplicial sheaves

I+
proj := {∂∆U [n]+ → ∆U [n]+ |U ∈ C , n ∈ N} . (2.22)

The morphisms ∂∆U [n]+ → ∆U [n]+ are termwise coprojections in ∆opC̄+ for all U ∈ C

and n ∈ N

Lemma 2.3.15. For any object U ∈ C and every finite simplicial set K (see Definition

2.2.17), the object ∆U [0]×K is finite relative to ∆opS in the sense of Definition 2.1.4

of [18].

Proof. Let us fix an object U ∈ C and a finite simplicial set K. Since K is finite, there

is a finite cardinal κ such that K is κ-small relative to all morphisms of ∆opSets. We

claim that ∆U [0]×K is κ-small relative to all morphisms in ∆opS . Indeed, let λ be a

κ -filtered ordinal and let

X0 →X1 → · · · →Xβ → · · · (β < λ)

be a λ-sequence of simplicial sheaves on CNis. Since filtered colimits of Nisnevich

sheaves (computed in the category of presheaves) are sheaves, we obtain a λ-sequence

of simplicial sets,

X0(U)→X1(U)→ · · · →Xβ(U)→ · · · (β < λ) .

Then, we have a commutative diagram

colim β<λHom∆opS (∆U [0]×K,Xβ)

��

// Hom∆opS

(
∆U [0]×K, colim β<λXβ

)

��

colim β<λHom∆opSets(K,Xβ(U)) // Hom∆opSets

(
K, colim β<λXβ(U)

)
where the vertical arrows are bijections. Since K is κ-small relative to all morphisms

of ∆opSets, the horizontal arrow at the bottom of the preceding diagram is bijective,

hence the top arrow is so. This completes the proof.

Definition 2.3.16. Let D be a category admitting filtered colimits. An object X of D

is called compact if the corepresentable functor HomD(X,−) preserves filtered colimits.
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Example 2.3.17. Representable presheaves are compact objects in the category of

presheaves. In consequence, representable sheaves are compact objects in the category

of Nisnevich sheaves.

Remark 2.3.18. Let us consider the hypothesis of Lemma 2.3.15. The ∆U [0]×K is

compact in ∆opS in the sense of Definition 2.3.16. Indeed, it follows from the fact

that K is a compact object in ∆opSets and a representable sheaf is a compact object

in S (Example 2.3.17).

Lemma 2.3.19. Every morphism in (Iproj)-inj is a sectionwise trivial fibration.

Proof. Let f : X → Y be a morphism in (Iproj)-inj and let us fix an object U of C .

By the naturality of the isomorphism (2.19), a commutative diagram

∂∆[n]

��

//X (U)

��
∆[n] // Y (U)

(2.23)

in ∆opSets, corresponds biunivocally to a diagram

∂∆U [n]

��

//X

��
∆U [n] // Y

in ∆opS . As the left vertical arrow is an element of Iproj, the above diagram has a

lifting. Therefore, the bijection (2.19) induces a lifting of (2.23).

The following corollary is a consequence of the small object argument. It will be

useful to show that the cofibrant resolution takes its values in the category ∆opC̄ .

Corollary 2.3.20. There exists a functorial factorization (α, β) on ∆opS such that

for every morphism f is factored as f = β(f) ◦ α(f), where β(f) is sectionwise trivial

fibration and α(f) is a termwise coprojection with terms form Xn → Xn q Yn, where

Yn is an object of C̄ .

Proof. By Lemma 2.3.15, the objects ∂∆U [n] and ∆U [n] are finite relative to ∆opS .

Since the countable ordinal ω is κ-filtered, the small object argument provides a fac-

torization such that β(f) in (Iproj)-inj and α(f) is a countable transfinite composition

of pushouts of coproducts of elements of Iproj. By Example 2.3.7, every morphism

∂∆U [n] → ∆U [n] of Iproj is a termwise coprojection in ∆opC̄ . Therefore, Corollary

2.2.50 provides the desired factorization.
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We denote by Qproj the endofunctor of ∆opS which sends a simplicial sheaf X to

the codomain of the morphism α(∅ →X ), where ∅ is the initial object of ∆opS . The

endofunctor Qproj will be called cofibrant resolution. In particular, for every object

X of ∆opS , the canonical morphism from Qproj(X ) to X is a sectionwise trivial

fibration.

Corollary 2.3.21. The functor Qproj takes values in ∆opC̄ .

Proof. Let X be a simplicial sheaf in ∆opS . By Corollary 2.3.20, the morphism of

simplicial sheaves ∅ → X , where ∅ is the initial object of ∆opS , factors into ∅ →
Qproj(X ) → X such that the terms of Qproj(X ) are in C̄ , that is, Qproj(X ) is in

∆opC̄ .

Remark 2.3.22. As in Corollary 2.3.21, we also have a pointed cofibrant resolution

∆opS∗ → ∆opC̄+. We shall denote it by the same symbol Qproj if no confusion arises.

Lemma 2.3.23. The class of A1-weak equivalences in ∆opS∗ is closed under finite

coproducts and smash products.

Proof. By Example 2.3.12, the class of A1-weak equivalences in ∆opS∗ is ∆̄-closed.

Then, it is closed under finite coproducts. Next, let us prove that this class is closed

under smash products. By the cube lemma (see [18, Lemma 5.2.6]), one reduces the

problem to the unpointed case, i.e. for products in ∆opS . Using standard simplicial

methods, the problem is reduced to show that: for every A1-weak equivalence and

every simplicial sheaf Z of the ∆U [0] for U in C , the product f × idZ is an A1-weak

equivalence. But it follows from Example 2.3.12 and Lemma 2.2.33 applied to the

functor (−)× idZ .

2.3.2 Simplicial sheaves on Σn-schemes

In this section, we shall define geometric symmetric powers of (simplicial) Nisnevich

sheaves as left Kan extensions. The smallness condition on an admissible category will

allow us to express a geometric symmetric power in terms of colimits. We follow the

ideas of Voevodsky [40] in order to prove that geometric symmetric powers preserve

A1-weak equivalences between simplicial Nisnevich sheaves which termwise are coprod-

ucts of representable sheaves. We also prove the existence of the left derived functors

associated to geometric symmetric powers.

Let C be an admissible category of schemes over a field k. For an integer n ≥ 1,

the category C Σn denotes the category of functors Σn → C , where Σn is viewed as a

category. We recall that C Σn can be viewed as the category of Σn-objects of C .
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Definition 2.3.24. Let X be an Σn-object on C and let x ∈ X. The stabilizer of x is

the subgroup stab(x) ⊂ Σn consisting of elements σ ∈ Σn such that σ.x = x.

Definition 2.3.25. A family of morphisms {fi : Ui → X}i∈I in C Σn is called Σn-

equivariant Nisnevich covering if each morphism fi, viewed as a morphism of C , is

étale and we have the following property: for each point x ∈ X, viewed as an object

of C , there exist an index i ∈ I and a point y ∈ Ui such that: fi(y) = x, the canonical

homomorphism of residual fields k(x) → k(y) is an isomorphism, and the induced

homomorphisms of groups stab(y)→ stab(x) is an isomorphism.

Let C Σn
Nis be the site consisting of C Σn and the Grothendieck topology formed by

the Σn-equivariant Nisnevich coverings. We denote by S Σn the category of sheaves on

C Σn
Nis . We point out that S Σn is not the category of Σn-objects in S .

Remark 2.3.26. For n = 1, a Σn-equivariant Nisnevich covering is a usual Nisnevich

covering in C .

Definition 2.3.27. A Cartesian square in C Σn of the form (2.17) is an elementary

distinguished square if p is an étale morphism and j is an open embedding when we

forget the action of Σn, such that the induced morphism of reduced schemes

p|p−1(X−U)red
: p−1(X − U)red → (X − U)red

is an isomorphism.

Remark 2.3.28. Notice that when n = 1, the above definition coincide with the usual

definition of an elementary distinguished square.

Let us keep the considerations of Definition 2.3.27. An elementary square in C Σn

of the form (2.17) induces a diagram

∆Y [0]+ ∨∆Y [0]+

��

// ∆Y [0]+ ∧∆[1]+

∆U [0]+ ∨∆V [0]+

Definition 2.3.29. We denote by KQ the pushout in ∆opS Σn
∗ of the above diagram

and denote by GΣn,Nis the set of morphisms in C Σn of canonical morphisms from KQ

to ∆X [0]+. The set GΣn,Nis is called set of generating Nisnevich equivalences.

On the other hand, we denote by PΣn,A1 the set of morphisms in C Σn which is

isomorphic to the projection from ∆X [0]+ ∧ ∆A1 [0]+ to ∆X [0]+, for X in C Σn . By

Lemma 13 [7, page 392], the class of A1-weak equivalences in ∆opS Σn coincides with

the class

cl∆̄(GΣn,Nis ∪ PΣn,A1) . (2.24)
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We denote by Const : C → C Σn the functor which sends X to the Σn-object X,

where Σn acts on X trivially. Let colim Σn : C Σn → C be the functor which sends X

to colim ΣnX = X/Σn. By definition of colimit, the functor colim Σn is left adjoint to

the functor Const. It turns out that the functor Const preserves finite limits and it

sends Nisnevich coverings to Σn-equivariant Nisnevich coverings. In consequence, the

functor Const is continuous and the functor colim Σn is cocontinuous.

Let Λn : C → C Σn be the functor which sends X to the nth fold product X×n.

Then, the endofunctor Symn of C is nothing but the composition of colim Σn with Λn.

Proposition 2.3.30. The cocontinuous functor colim Σn : C Σn
Nis → CNis is also contin-

uous. In consequence, it is a morphism of sites.

Proof. See [7, Prop. 43].

The previous proposition says that the functor colim Σn is a morphism of sites, then

it induces an adjunction between the inverse and direct image functors,

(colim Σn)∗ : S � S Σn : (colim Σn)∗ .

Hence, one has a commutative diagram up to isomorphisms

C Σn
Nis

h

��

colim Σn // CNis

h

��
S Σn

(colim Σn )∗
// S

(2.25)

where h is the Yoneda embedding. We denote by

γn : ∆opS Σn −→ ∆opS

the functor induced by (colim Σn)∗ defined termwise. From the diagram (2.25), we

deduce that γn preserve terminal object, then it induces a functor

γn,+ : ∆opS Σn
∗ −→ ∆opS∗ .

We write Λ̃n for the left Kan extension of the composite C
Λn−→ C Σn h−→ S Σn along

the Yoneda embedding h : C −→ S . Denote by

λn : ∆opS −→ ∆opS Σn

the functor induced by Λ̃n defined termwise. Since Λ̃n preserves terminal objects, the

functor λn does so, hence it induces a functor

λn,+ : ∆opS∗ −→ ∆opS Σn
∗ .
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2.3.3 Geometric symmetric powers

Let C ⊂ Sch/k be an admissible category. Fix an object X of C and an integer n ≥ 1.

By definition of an admissible category, C is closed under finite products and quotients

under finite groups. Then nth fold product X×n is an object of C , hence, the quotient

X×n/Σn is also in C . Denote this quotient by Symn(X). Then, we have a functor

Symn : C → C . It is immediate to observe that Symn (Spec(k)) is isomorphic to the

point Spec(k) for n ≥ 1. By convention, Sym0 will be the constant endofunctor of C

which sends an object X of C to the point Spec(k).

Let us fix n ∈ N. Since C is a small category and ∆opS is cocomplete, Theorem

3.7.2 of [4] asserts the existence of the left Kan extension of the composite

C
Symn

−→ C
h−→ S

along the Yoneda embedding h.

Definition 2.3.31. We denote by Symn
g the above left Kan extension, and call it the

nth-fold geometric symmetric power of Nisnevich sheaves.

Explicitly, Symn
g is described as follows. For a sheaf X in S , we denote by (h ↓X )

the comma category whose objects are arrows of the form hU → X for U ∈ ob (C ).

Let FX : (h ↓ X ) → S be the functor which sends a morphism hU → X to the

representable sheaf hSymnU . Then, Symn
g (X ) is nothing but the colimit of the functor

FX .

Definition 2.3.32. The endofunctor Symn
g of Definition 2.3.31 induces an endofunctor

of ∆opS . We call it the nth-fold geometric symmetric power of simplicial Nisnevich

sheaves. By abuse of notation, we denote this endofunctor by the same symbol Symn
g

if no confusion arises.

Example 2.3.33. Fix a natural number n. For each k-scheme X in C , the nth fold

geometric symmetric power Symn
g (hX) of the representable functor hX coincides with

the representable functor hSymnX . The section Symn
g (hX)(Spec(k)) is nothing but the

set of effective zero cycles of degree n on X.

Remark 2.3.34. Since Symn
g : S → S preserves the point Spec(k), it induces an

endofunctor of S∗, and hence an endofunctor of ∆opS∗.

Warning 2.3.35. As many statements hold similarly for pointed and unpointed (sim-

plicial) sheaves, we shall use the same symbol Symn
g to denote the nth fold geometric

symmetric power both pointed and unpointed (simplicial) sheaves if no confusion arises.

Lemma 2.3.36. Left adjoint functors preserves left Kan extensions, in the following

sense. Let L : E → E ′ be a left adjoint functor. If LanGF is the left Kan extension of

a functor F : C → E along a functor G : C → D , then the composite L ◦ LanGF is the

left Kan extension of the composite L ◦ F along G.
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Proof. See [33, Lemma 1.3.3].

Lemma 2.3.37. For every natural n, the endofunctor Symn
g of ∆opS is isomorphic

to the composition γn ◦λn. Similarly, Symn
g as an endofunctor of ∆opS∗ is isomorphic

to the composition γn,+ ◦ λn,+.

Proof. Since the functors Symn
g , γn and λn are termwise, it is enough to show that

Symn
g , as a endofunctor of S , is isomorphic to the composition of Λ̃n with (colim Σn)∗.

Indeed, as the functor (colim Σn)∗ is left adjoint, Lemma 2.3.36 implies that the com-

posite

S
Λ̃n // S Σn

(colim Σn )∗ // S (2.26)

is the left Kan extension of the composite

C
Λn // C Σn h // S Σn

(colim Σn )∗ // S

along the embedding h : C → S . Now, in view of the commutativity of diagram (2.25),

the preceding composite is isomorphic to the composite

C
Λn // C Σn

colim Σn // C
h // S ,

but it is isomorphic to the composite C
Symn

−→ C
h→ S , which implies that the composite

(2.26) is isomorphic to Symn
g , as required.

We denote by C̄+ the full subcategory of coproducts of pointed objects of the form

(hX)+ in S∗ for objects X in C . For every object X in C , the pointed sheaf (hX)+ is

isomorphic to h(X+). Indeed, (hX)+ is by definition equal to the coproduct hXqhSpec(k)

and this coproduct is isomorphic to the representable functor hXqSpec(k) which is equal

to h(X+).

Similarly, we denote by
¯C Σn
+ the full subcategory of coproducts of pointed objects

(hX)+ in S Σn
∗ for objects X in C Σn .

Theorem 2.3.38 (Voevodsky). Let f : X → Y be a morphism in ∆opC̄+. If f is an

A1-weak equivalence in ∆opS∗, then Symn
g (f) is an A1-weak equivalence.

Proof. By Lemma 2.3.37, Symn
g is the composition γn,+ ◦ λn,+. The idea of the proof

is to show that γn,+ and λn,+ preserve A1-weak equivalences between objects which

termwise are coproducts of representable sheaves. The functor λn,+ sends morphisms

of WNis,+ ∪PNis,+ between objects in ∆opC̄+ to A1-weak equivalences between objects

in ∆op ¯C Σn
+ . Since λn,+ preserves filtered colimits, Lemma 2.20 of [41] implies that λn,+

preserves A1-weak equivalence as claimed. Similarly, in view of the class given in (2.24),

we use again Lemma 2.20 of loc.cit. to prove that γn,+ sends A1-weak equivalences

between objects in ∆op ¯C Σn
+ to A1-weak equivalences, as required
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We define the functor Φ: ∆opC̄+ →H∗(CNis,A1) as the composite

∆opC̄+ ↪→ ∆opS∗ →H∗(CNis,A1) ,

where the first arrow is the inclusion functor and the second arrow is the localization

functor with respect to the A1-weak equivalences.

Lemma 2.3.39. Let C be an admissible category. The functor

Φ: ∆opC̄+ →H∗(CNis,A1)

is a strict localization, that is, for every morphism f in H∗(CNis,A1), there is a mor-

phism g of ∆opC̄+ such that the image Φ(g) is isomorphic to f .

Proof. By Theorem 2.5 of [30, page 71], the category H∗(CNis,A1) is the localization

of the category H∗(CNis) with respect to the image of A1-weak equivalences trough the

canonical functor. Then, it is enough to prove that the canonical functor from ∆opC̄+

to H∗(CNis) is a strict localization. Indeed, let f : X → Y be a morphism of pointed

simplicial sheaves on the site CNis representing a morphism in H∗(CNis). The functorial

resolution Qproj gives a commutative square

Qproj(X )
Qproj(f) //

��

Qproj(Y )

��
X

f
// Y

where the vertical arrows are object-wise weak equivalences. Since the object-wise weak

equivalences are local weak equivalences, the vertical arrows of the above diagram are

weak equivalences. This implies that f is isomorphic toQproj(f) in H∗(CNis). Moreover,

by Corollary 2.3.21, the morphism Qproj(f) is in ∆opC̄+.

Corollary 2.3.40. For each integer n ≥ 1, there exists the left derived functor LSymn
g

from H∗(CNis,A1) to itself such that we have a commutative diagram up to isomorphism

∆opC̄+

Φ

��

Symn
g // ∆opS∗

��
H∗(CNis,A1)

LSymn
g

//H∗(CNis,A1)

(2.27)

where the right arrow is the localization functor.
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Proof. By Theorem 2.3.38, the functor Symn
g preserves A1-weak equivalences between

objects in ∆opC̄+. Hence, the composite

∆opC̄+

Symn
g−→ ∆opS∗ −→H∗(CNis,A1)

sends A1-weak equivalences to isomorphisms. Then, by Lemma 2.3.39 there exists a

functor LSymn
g such the diagram (2.27) commutes and for every simplicial sheaf X ,

the object LSymn
g (X ) is isomorphic to Symn

g (Qproj(X )) in H∗(CNis,A1).

2.4 Stable motivic category

In this section C will denote a small admissible category contained in the category

of quasi-projective schemes over a field k of arbitrary characteristic. The letter S to

denote the category of Nisnevish sheaves and the category ∆opS∗ is the category of

pointed simplicial sheaves studied in the previous sections. We write S1 for pointed

simplicial circle, i.e. the cokernel of the morphism ∂∆[1]+ → ∆[1]+ in ∆opSets∗. We

shall denote by T the smash product S1∧(Gm, 1). There is an isomorphism T ' (P1,∞)

in H∗(CNis,A1), cf. [30, Lemma 3.2.15].

Generalities

We denote by SptT (k) the category of symmetric T -spectra on the category ∆opS∗.

The category SptT (k) is naturally equivalent to the category of left modules over the

commutative monoid sym(T ) :=(Spec(k)+, T, T
∧2, T∧3, . . . ). For each n ∈ N, there is

an evaluation functor Evn from SptT (k) to ∆opS∗ which takes a symmetric T -spectrum

X to its nth slice Xn. The evaluation functor Evn has a left adjoint functor denoted

by Fn. The functor F0 is called suspension functor, and it is usually denoted by Σ∞T .

This functor takes simplicial sheaf X to the symmetric T -spectrum

(X ,X ∧ T,X ∧ T∧2, . . . ) .

For a scheme X in C , we write Σ∞T (X+) instead of Σ∞T (∆X [0]+). A morphism of T -

spectra f : X → Y is a level A1-weak equivalence (a level fibration) if each term fn

is an A1-weak equivalence (a fibration) in ∆opS∗ for all n ∈ N. We say that f is a

projective cofibration if it has the left lifting property with respect to both level A1-

equivalences and level fibrations. The class of level A1-weak equivalences, the class of

the level fibrations and the class of projective cofibrations define a left proper cellular

model structure on SptT (k) called projective model structure, see [19]. Let I (resp.

J) be the set of generating (resp. trivial) cofibrations of the injective model structure

of ∆opS∗. The set IT :=
⋃
n≥0 Fn(I) (resp. JT :=

⋃
n≥0 Fn(J)) is the set of generating
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cofibrations (resp. trivial cofibrations) of the projective model structure of SptT (k), cf.

[19].

In order to define the stable model structure on SptT (k), one uses the Bousfield

localization of its projective model structure with respect to a certain set of morphisms

of symmetric T -spectra, so that the functor − ∧ T : SptT (k) → SptT (k) becomes a

Quillen equivalence. We shall define this set as follows. For every simplicial sheaf X

in ∆opS∗ and every n ∈ N, we denote by ζX
n : Fn+1(X ∧ T )→ Fn(X ) the morphism

which is adjoint to the morphism

X ∧ T −→ Evn+1(Fn(X )) = Σn+1 ×Σ1 (X ∧ T ) ,

induced by the canonical embedding of Σ1 into Σn. We set

S :=
{
ζX
n |X ∈ dom (I) ∪ codom (I), n ∈ N

}
.

The stable model structure on SptT (k) is the Bousfield localization of the projective

model structure on SptT (k) with respect to S, cf. [19]. A S-local weak equivalence

will be called a stable weak equivalence. The stable model structure on SptT (k) is left

proper and cellular. The functor Σ∞T : ∆opS∗ → SptT (k) is a left Quillen functor, see

loc.cit. For any two symmetric T -spectra X and Y , its smash product X ∧sym(T ) Y

is defined to be the coequalizer of the diagram

X ∧ sym(T ) ∧ Y ⇒ X ∧ Y ,

induced by the canonical morphisms X ∧ sym(T ) → X and sym(T ) ∧ Y → Y . The

smash product of spectra defines a symmetric monoidal structure on SptT (k). We

denote by SHT (k) the homotopy category of the category SptT (k) with respect to

stable A1-weak equivalences.

Chain complexes

Let Ab be the category of Abelian groups. The classical Dold-Kan correspondence

establishes a Quillen equivalence

N : ∆opAb � ch+(Ab) : Γ ,

between the category of simplicial Abelian groups and the category of N-graded chain

complexes of Abelian groups. Let A be an Abelian Grothendieck category. We write

ch+(A ) for the category of N-graded chain complexes on A . The above adjunction

induces an adjunction

N : ∆opA � ch+(A ) : Γ . (2.28)

The category ch+(A ) has a monoidal proper closed simplicial model category such that

the class of weak equivalences are quasi-isomorphisms and such that the adjunction
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2.28 becomes a Quillen equivalence [23, Lemma 2.5]. For any n ∈ Z, we have the

translation functor ch+(A )→ ch+(A ) which sends a chain complex C to C[n] defined

by (C[n])i :=Cn+i for i ≥ 0. For each n ≥ 0, we denote by Z[n] the chain complex

· · · → 0→ Z→ 0→ · · · → 0

concentrated in degree n. If the symbol ⊗ denotes the tensor product of N-graded

chain complexes of Abelian groups, then, for n ∈ N, we have Z[n] = Z[1]⊗n. Hence,

the symmetric group Σn acts naturally on Z[n], and we have the symmetric sequence

sym(Z[1]) = (Z[0],Z[1],Z[2], · · · )

in ch+(Ab). For any chain complex C∗ in ch−(A ), we have

C∗ ⊗ Z[n] = C∗[−n] .

Let SptZ[1](ch+(A)) be the category of symmetric Z[1]-spectra. Its objects are

symmetric sequences (C0, C1, . . . , Cn . . . ) where each Cn is a chain complex in ch+(A)

together with an action of the symmetric group Σn on it. For a symmetric Z[1]-spectrum

C∗, we have structural morphisms of the form Cn ⊗ Z[1]→ Cn+1 for n ∈ N.

2.4.1 Rational stable homotopy category of schemes

In the next paragraphs, we shall recall some results on rational stable homotopy cate-

gories of schemes over a field. Here, SHT (k) will be the stable A1-homotopy category of

smooth schemes over a field k constructed in [22]. One result that is very important is

a theorem due to Morel which asserts an equivalence of categories between the rational

stable homotopy category SHT (k)Q and the rational big Voevodsky’s category DM(k)Q.

This will allows us to show the existence of transfers of some morphisms in SHT (k)Q

that will be studied in Section 4.3.1 and 4.3.2.

Let T be a triangulated category with small sums and with a small set of compact

generators [31]. An object T in T is said to be torsion (resp. uniquely divisible)

if for every compact generator X in T , the canonical morphism from HomT (X,T )

to HomT (X,T ) ⊗Z Q is the zero morphism (resp. an isomorphism). Let Ttor (resp.

TQ) be the triangulated subcategory of T generated by the torsion objects (resp.

uniquely divisible objects). The full embedding functor TQ ↪→ T has a left adjoint

LQ : T → TQ and its kernel is nothing but Ttor. Then, TQ is equivalent to the Verdier

quotient T /Ttor (see [34, Annexe A]). We denote by SHT (k)Q the Verdier quotient

of SHT (k) by the full-subcategory SHT (k)tor generated by compact torsion objects.

We recall that a morphism of symmetric T -spectra f : X → Y is a stable A1-weak

equivalence if and only if the induced morphism

f∗ : HomSHT (k)

(
Σ∞T (Sr ∧Gs

m ∧ U+),X
)
−→ HomSHT (k)

(
Σ∞T (Sr ∧Gs

m ∧ U+),Y
)
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is an isomorphism of Abelian groups for all couples (r, s) ∈ N2 and all smooth schemes

U over k (see [18, Th. 1.2.10(iv)].

A morphism of T -spectra f : X → Y is called rational stable A1-weak equivalence

if the induced morphism f∗ ⊗ Q is an isomorphism of Q-vector spaces for all couples

(r, s) ∈ N2 and all smooth schemes U over k. The localization of SHT (k) with respect

to the rational stable A1-weak equivalences coincides with SHT (k)Q.

2.4.2 The motivic Hurewicz functor

Let AbtrNis be the category of Nisnevich Abelian sheaves with transfers on the category

of smooth schemes Sm/k over a field k c.f. [27]. Let τ be either the h-topology

or qfh-topology on the category of k-schemes of finite type. We write Abtrτ for the

category of τ -Abelian sheaves with transfers on the category of k-schemes of finite

type. We consider the A1-localized model category of the projective model structure

on ch+(AbtrNis) and in ch+(Abtrτ ). Let DM(k) be the homotopy category of the category

of symmetric T -spectra SptT (ch+(AbtrNis)) with respect to stable A1-weak equivalences.

If the characteristic of k is zero, then DM(k) is equivalent to the homotopy category

of the category of modules over the motivic Eilenberg-MacLane spectrum [35]. We

denote by DM(k)τ the homotopy category of the category of symmetric T -spectra

SptT (ch+(Abtrτ )) with respect to stable A1-weak equivalences. We write DMτ (k) for the

localizing subcategory of DMτ (k) generated by the objects of the form Σ∞T Zτ (X)(m)[n]

for k-smooth schemes of finite type X and for all couples (m,n) ∈ Z, see [6]. One has

an adjunction of triangulated categories

Hu : SHT (k) � DM(k) : H ,

where Hu is the motivic Hurewicz functor and H is the Eilenberg-MacLane spectrum

functor [29, 6]. This adjunction induces an adjunction of triangulated categories with

rational coefficients

HuQ : SHT (k)Q � DM(k)Q : HQ .

We write S0 for the sphere T -spectrum. Let ε : S0 → S0 be the morphism of spectra

induced by the morphism Gm → Gm which comes from the homomorphism of k-

algebras k[x, x−1] → k[x, x−1] given by x 7→ x−1. Notice that ε◦2 = id. We set

e+ :=(ε◦2 − 1)/2 and e− :=(ε◦2 + 1)/2. Notice that e+ and e− are both idempotent.

Since SHT (k)Q has small coproducts (see [31]), the triangulated category SHT (k)Q is

pseudo-abelian, hence the morphisms e+ and e− have image. We put S0
Q,+ :=im e+ and

S0
Q,− :=im e−. Then, they induce two functors

SHT (k)Q −→ SHT (k)Q,+ ,

SHT (k)Q −→ SHT (k)Q,− ,
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defined by X 7→X ∧LS0
Q,+ and X 7→X ∧LS0

Q,− respectively. Since S0
Q = S0

Q,+⊕S0
Q,−,

it induces a decomposition

SHT (k)Q = SHT (k)Q,+ × SHT (k)Q,− .

Remark 2.4.1. For the existence of the above decomposition of SHT (k)Q, we have

only used the fact that 2 is invertible in Q. In fact, this decomposition is true for

triangulated category SHT (k)Z[ 1
2

] with Z[1
2 ]-coefficients.

The following theorem was predicted by F. Morel.

Theorem 2.4.2. Suppose that −1 is a sum of squares in k. Then we have an equiva-

lence of categories SHT (k)Q ' DM(k)Q.

Proof. The fact that −1 is a sum of squares in k implies that the category SHT (k)Q,+

coincides with SHT (k)Q. Hence, the theorem follows from Theorem 16.1.4 and Theorem

16.2.13 in [6].

Let DA1(k) be the homotopy category of the category of symmetric T -spectra

SptT (ch+(AbNis)) with respect to stable A1-weak equivalences. The category of Beilin-

son motives DMÁ(k) is the Verdier quotient of DA1(k)Q by the localizing subcategory

generated by HÁ-acyclic objects, where HÁ is the Beilison motivic spectrum, see [6, 34].

If −1 is a sum of squares in k, then we have a diagram of equivalences of categories:

SHT (k)Q DA1(k)Q DMÁ(k) DM(k)Q

DMh(k)Q

DMqfh(k)Q

For the proof of these equivalences see [6, 29]. In consequence, we obtain the following

corollary.

Corollary 2.4.3. If −1 is a sum of squares in k, then we have an equivalence of

categories SHT (k)Q ' DMqfh(k)Q.

Proof. See [6].
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Chapter 3

Geometric symmetric powers in
motivic categories

In this chapter, we study the Künneth towers of geometric symmetric powers of mo-

tivic spaces defined in Section 2.3.3. We also study geometric symmetric powers for

motivic symmetric spectra, see Section 3.3. Finally, we study the differences between

the categoric and geometric symmetric powers of presheaves represented by particular

schemes, such as, finite Galois extensions, the double point, affine line and affine plane,

see Section 3.4. We shall start this chapter giving some preliminaries on categoric

symmetric powers, see [13].

3.1 Categoric symmetric powers

Symmetric powers appear in many areas of mathematics as an important tool, for

instance the singular homology of a CW-complex can be understood as a homotopy

group of infinite symmetric powers. Let us give some ideas. If (X,x) is a pointed

topological space, then for each integer n ≥ 0, we have the n-fold symmetric power

Symn(X,x). We have a sequence of embeddings

Sym1(X,x) ↪→ Sym2(X,x) ↪→ · · · ↪→ Symn(X,x) ↪→ · · ·

and it induces an infinite symmetric power

Sym∞(X,x) :=colim n∈NSymn(X,x) ,

which plays an important role in the Dold-Thom theorem.

For a set X, let N[X] (resp. Z[X]) be the free commutative monoid (resp. free

Abelian group) generated by X. If x is an element of X, we write N[x] instead of

N[{x}], similarly for Z[x]. Notice that the elements of N[x] have the form m · x with

m ∈ N. Let n be a positive integer. The nth fold symmetric power Symn(X) :=Xn/Σn

can be seen as the set of linear combinations
∑n

i=1 xi ∈ N[X], where each xi is an

element of X.
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Lemma 3.1.1. Suppose that X is a finite set, say it has a cardinality equal to r ≥ 1.

Then Symn(X) has a cardinality equal to
(
r+n−1
n

)
.

Proof. It follows after noticing that Symn(X) is bijective to the set of all combination

with repetition of r elements choose n.

Example 3.1.2. If X = {a, b, c} is a set with three elements, then Sym2(X) is the set{
a+ a, a+ b, b+ b, b+ c, c+ c, c+ a

}
,

which has
(

3+2−1
2

)
= 6 elements.

For a pointed set (X,x), there is an isomorphism of monoids

Sym∞(X,x) ' N[X]/N[x] ,

hence, we have an isomorphism of Abelian groups

Sym∞(X,x)+ ' Z[X]/Z[x] .

where the left-hand side is the group completion of Sym∞(X,x).

The Dold-Thom theorem asserts that for any pointed connected CW complex (X, ∗),
there is a weak equivalence

Sym∞(X, ∗)→
∏
n≥1

K(Hn(X,Z), n) ,

where Hn(X,Z) is the singular homology of X; or alternatively, an isomorphism

πn(Sym∞(X, ∗)) ' Hn(X,Z) ,

for all n ≥ 1. Removing the connectedness assumption on X, the Dold-Thom theorem

can be reformulated by stating an isomorphism

πn(Sym∞(X, ∗)+) ' H̃n(X,Z) ,

for all n ≥ 0, where H̃n(X,Z) is the reduced singular homology of X.

3.1.1 Pushout-products

Assumption 3.1.3. Unless otherwise specified, we shall assume that the monoidal

product ∧ of a symmetric monoidal category with pushouts preserves pushouts on

both sides, i.e. for any two objects X and Y , the functors X ∧ − and − ∧ Y preserve

pushouts. Similarly, the monoidal product ∧ of a symmetric monoidal category with

finite colimits will always preserve finite colimits on both sides.
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For example, these assumptions are satisfied when the monoidal category in question

is closed, [26, p. 180].

Definition 3.1.4. Let C be a symmetric monoidal category with pushouts. We denote

by ∧ its monoidal product. We recall that, for any two morphisms f : X → Y and

f ′ : X ′ → Y ′ in C , the box operation of f and f ′ is the pushout

2(f, f ′) :=(X ∧ Y ′) ∨X∧X′ (Y ∧X ′) .

The universal morphism f2f ′ : 2(f, f ′) → Y ∧ Y ′ is called pushout-product of f and

f ′, which fits into the following pushout diagram:

X ∧X ′
f∧idX′ //

idX∧f ′

��

Y ∧X ′

��

idY ∧f ′

��

X ∧ Y ′ //

f∧idY ′
11

2(f, f ′)

f2f ′

((
Y ∧ Y ′

(3.1)

Proposition 3.1.5. The pushout-product 2 is commutative and associative. More

precisely, if f : X → Y , f ′ : X ′ → Y ′ and f ′′ : X ′′ → Y ′′ are three morphisms in C ,

then there exist a canonical isomorphism of commutativity

f2f ′ ' f ′2f , (3.2)

and a canonical isomorphism of associativity

(f2f ′)2f ′′ ' f2(f ′2f ′′) . (3.3)

Proof. Let f : X → Y , f ′ : X ′ → Y ′ and f ′′ : X ′′ → Y ′′ be three morphisms in C . Since

the monoidal product ∧ is symmetric, the diagram 3.1 is isomorphic to the following

diagram

X ′ ∧X
idX′∧f //

f ′∧idX

��

X ′ ∧ Y

��

f ′∧idY

��

Y ′ ∧X //

idY ′∧f
11

2(f ′, f)

f ′2f

((
Y ′ ∧ Y

(3.4)

Then, we get the isomorphism (3.2), proving thus the commutativity of 2. Let us prove

that associativity of 2. Indeed, the morphisms f , f ′ and f ′′ induce a commutative
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diagram

X ∧X ′ ∧X ′′

��

//

!!CCCCCCCCCCCCCCCCCCCCCCC Y ∧X ′ ∧X ′′

��

!!CCCCCCCCCCCCCCCCCCCCCC

X ∧X ′ ∧ Y ′′

��

// Y ∧X ′ ∧ Y ′′

��

X ∧ Y ′ ∧X ′′ //

!!CCCCCCCCCCCCCCCCCCCCCCC

!!CCCCCCCCCCCCCCCCCCCCCCC Y ∧ Y ′ ∧X ′′

!!CCCCCCCCCCCCCCCCCCCCCC

X ∧ Y ′ ∧ Y ′′ // Y ∧ Y ′ ∧ Y ′′
(3.5)

The colimit of the diagram

X ∧X ′ ∧X ′′

��

//

!!CCCCCCCCCCCCCCCCCCCCCCC Y ∧X ′ ∧X ′′

��

!!CCCCCCCCCCCCCCCCCCCCCC

X ∧X ′ ∧ Y ′′

��

// Y ∧X ′ ∧ Y ′′

X ∧ Y ′ ∧X ′′ //

!!CCCCCCCCCCCCCCCCCCCCCCC

!!CCCCCCCCCCCCCCCCCCCCCCC Y ∧ Y ′ ∧X ′′

X ∧ Y ′ ∧ Y ′′
(3.6)

can be computed by means of pushouts. For instance, considering the vertex Y ∧Y ′∧X ′′
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of diagram (3.6), we deduce a diagram

(Y ∧X ′ ∧X ′′)
∨
X∧X′∧X′′(X ∧ Y ′ ∧X ′′)

��

// (Y ∧X ′ ∧ Y ′′)
∨
X∧X′∧Y ′′(X ∧ Y ′ ∧ Y ′′)

Y ∧ Y ′ ∧X ′′
(3.7)

whose pushout is isomorphic to the colimit of diagram (3.6). Similarly, considering the

vertex X ∧ Y ′ ∧ Y ′′, we obtain a diagram

(X ∧ Y ′ ∧X ′′)
∨
X∧X′∧X′′(X ∧X ′ ∧ Y ′′)

��

// (Y ∧ Y ′ ∧X ′′)
∨
Y ∧X′∧X′′(Y ∧X ′ ∧ Y ′′)

X ∧ Y ′ ∧ Y ′′
(3.8)

whose pushout is isomorphic to the colimit of the same diagram. Since the monoidal

product ∧ commutes with pushouts, we get the following canonical isomorphisms

(Y ∧X ′ ∧X ′′)
∨

X∧X′∧X′′
(X ∧ Y ′ ∧X ′′) ' 2(f, f ′) ∧X ′′ ,

(Y ∧X ′ ∧ Y ′′)
∨

X∧X′∧Y ′′
(X ∧ Y ′ ∧ Y ′′) ' 2(f, f ′) ∧ Y ′′ ,

(X ∧ Y ′ ∧X ′′)
∨

X∧X′∧X′′
(X ∧X ′ ∧ Y ′′) ' X ∧2(f ′, f ′′) ,

(Y ∧ Y ′ ∧X ′′)
∨

Y ∧X′∧X′′
(Y ∧X ′ ∧ Y ′′) ' Y ∧2(f ′, f ′′) .

Then, the diagram (3.7) is isomorphic to the diagram

2(f, f ′) ∧X ′′

��

// 2(f, f ′) ∧ Y ′′

Y ∧ Y ′ ∧X ′′

(3.9)

and the diagram (3.8) is isomorphic to the diagram

X ∧2(f ′, f ′′)

��

// Y ∧2(f ′, f ′′)

X ∧ Y ′ ∧ Y ′′

(3.10)
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Finally, from diagram (3.5), we deduce that the diagram (3.9) fits into a pushout

diagram

2(f, f ′) ∧X ′′ //

��

2(f, f ′) ∧ Y ′′

��

��

Y ∧ Y ′ ∧X ′′ //

..

2(f2f ′, f ′′)

(f2f ′)2f ′′

))
Y ∧ Y ′ ∧ Y ′′

whereas the diagram (3.10) fits into a pushout diagram

X ∧2(f ′, f ′′) //

��

Y ∧2(f ′, f ′′)

��

��

X ∧ Y ′ ∧ Y ′′ //

..

2(f, f ′2f ′′)

f2(f ′2f ′′)

))
Y ∧ Y ′ ∧ Y ′′

Thus, we obtain an isomorphism 2(f2f ′, f ′′) ' f2(f ′2f ′′). Therefore, we have an

isomorphism (3.3), as required.

Corollary 3.1.6. Let C be a symmetric monoidal category with pushouts. Then,

the pushout-product 2 is a symmetric monoidal product in the category of morphisms

Map (C ).

Proof. Since the monoidal product ∧ of C preserves pushouts, for every object X of

C , we have canonical isomorphisms

X ∧ ∅ ' ∅ ' ∅ ∧X ,

where ∅ is the initial object of C . Then, the canonical morphism ∅ → 1 is the unit

object for the category Map (C ), where 1 denotes the unit object of C . Indeed, let

f : X → Y be a morphism in C . Replacing ∅ → 1 by f ′ in diagram (3.1), we deduce

that 2(f, ∅ → 1) is isomorphic to X, and f2(∅ → 1) is isomorphic to f . Hence, the

corollary follows from Proposition 3.1.5. Notice that the pentagon and the coherence

axioms follows from the axioms of the monoidal structure on ∧ and the universal

property of pushout.
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By virtue of Proposition 3.1.5, for finite collection {fi : Xi → Yi | i = 1, . . . , n} of

morphisms in C , we can omit the parentheses on the product

(· · · ((f12f2)2f3)2 · · ·2fn−1)2fn

and write simply

f12 · · ·2fn : 2(f1, . . . , fn)→ Y1 ∧ · · · ∧ Yn .

For a morphism f : X → Y in C and integer n ≥ 2, we shall write 2n(f) = 2(f, · · · , f)

and f2n = f2 · · ·2f . By convention, we write 21(f) = X and f21 = f .

3.1.2 Künneth towers

Let 2 = {0, 1} be the category with two objects and one non-identity morphism 0→ 1.

We denote by 2n the n-fold cartesian product of categories of 2 with itself. Observe

that the objects of 2n are n-tuples (a1, . . . , an), where each ai is 0 or 1, and a morphism

from (a1, . . . , an) to another n-tuple (a′1, . . . , a
′
n) is determined by the condition ai ≤ a′i

for all i = 1, . . . , n.

Remark 3.1.7. Let C be a category. The giving of a functor K : 2→ C is the same

as giving two objects K(0) = X, K(1) = Y and a morphism K(0→ 1) = f from X to

Y . We shall denote K by K(f).

Definition 3.1.8. Let C be a category. For any morphism f : X → Y in C and any

integer n ≥ 1, let Kn(f) be the composition

2n → C n ∧→ C

of the n-fold cartesian product of the functorK(f) : 2→ C and the functor ∧ : C n → C

sending an object (X1, . . . , Xn) to the product X1 ∧ · · · ∧Xn.

Example 3.1.9. For a morphism f : X → Y in a category C , the functor K2(f) can

be seen as a commutative square

X ∧X //

��

Y ∧X

��
X ∧ Y // Y ∧ Y

induced by f , and the functor K3(f) can be thought as a commutative cube:
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X ∧X ∧X //

  AAAAAAAAAAAAAAAAAAAAAA

��

Y ∧X ∧X

��

  AAAAAAAAAAAAAAAAAAAAAA

X ∧X ∧ Y

��

// Y ∧X ∧ Y

��

X ∧ Y ∧X //

  AAAAAAAAAAAAAAAAAAAAAA Y ∧ Y ∧X

  AAAAAAAAAAAAAAAAAAAAAA

X ∧ Y ∧ Y // Y ∧ Y ∧ Y
(3.11)

Definition 3.1.10. For any 0 ≤ i ≤ n, we denote by 2ni the full subcategory of 2n

generated by n-tuples (a1, . . . , an) such that a1 + · · · + an ≤ i. We shall denote by

Kn
i (f), the restriction of Kn(f) to 2ni .

Example 3.1.11. Let f : X → Y be a morphism. If n = 2, then K2
0 (f) consists of

the object X ∧X, K2
1 (f) is the diagram

X ∧X //

��

Y ∧X

X ∧ Y

and K2
2 (f) = K2(f). If n = 3, then K3

0 (f) is X∧3, K3
1 (f) is the diagram:
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X ∧X ∧X //

  AAAAAAAAAAAAAAAAAAAAAA

��

Y ∧X ∧X

X ∧X ∧ Y

X ∧ Y ∧X

K3
2 (f) is the diagram:

X ∧X ∧X //

  AAAAAAAAAAAAAAAAAAAAAA

��

Y ∧X ∧X

��

  AAAAAAAAAAAAAAAAAAAAAA

X ∧X ∧ Y

��

// Y ∧X ∧ Y

X ∧ Y ∧X //

  AAAAAAAAAAAAAAAAAAAAAA Y ∧ Y ∧X

X ∧ Y ∧ Y

and K3
3 (f) = K3(f), see diagram (3.11).

Remark 3.1.12. Let 0 ≤ i ≤ n be two indices. The category 2 can be seen as a poset

with 2 elements. Then, the category 2n is a poset with the product order, and the

category 2ni is a subposet with the restricted partial order of 2n.

Lemma 3.1.13. For every positive integer n, the symmetric group Σn acts naturally

on 2ni for all i = 1, . . . , n.
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Proof. Let us fix an index 0 ≤ i ≤ n. Any permutation σ ∈ Σn induces an automor-

phism σ : 2n → 2n taking an n-tuple (a1, . . . , an) to (aσ(1), . . . , aσ(1)). Notice that if

a1 + · · ·+an ≤ i, then one has aσ(1) + · · ·+aσ(n) = a1 + · · ·+an ≤ i, so the subcategory

2ni is invariant under the action of Σn. Thus, every automorphism σ : 2n → 2n induces

an automorphism σ : 2ni → 2ni for 1 ≤ i ≤ n.

Proposition 3.1.14. Let C be a symmetric monoidal category and let f : X → Y be

a morphism in C . Suppose that the for every index 0 ≤ i ≤ n, the ith fold pushout-

product f2i of f exists. Then, for every 0 ≤ i ≤ n, the colimit of the diagram Kn
i (f)

exists.

Proof. The idea is to use induction on n. Notice that the case when n is equal to 1 or 2,

the colimit of each Kn
i (f) exists. Now, suppose that n > 2 and the statement is true for

positive integers strictly less than n. Let rn,i =
(
n
i

)
and let us choose r permutations

σ1, . . . , σrn,i of Σn that represent the elements of the quotient Σn/(Σn−i × Σi). Let

0 ≤ j ≤ i be Notice that identifying an object (a1 . . . , ai) of 2ij with an object of the

form (0, . . . , 0, a1, . . . , ai) in 2nj , we get an inclusion {0}n−i× 2ij ↪→ 2nj . Let ξn(j,i) be the

universal morphism of posets qrn,ik=1({0}n−i × 2ij)→ 2nj induced by the composites

{0}n−i × 2ij
� � // 2nj

σk // 2nj ,

for k = 1, · · · , rn,i. The commutative square

∐rn,i
k=1

(
{0}n−i × 2ii−1

)
� � //

ξni−1,i

��

∐rn,i
k=1

(
{0}n−i × 2ii

)
ξni,i

��
2ni−1

� � // 2ni

is a pushout in the category of posets. Therefore, the above square allows one to

construct inductively a cocartesian square∐rn,i
k=1

(
X∧(n−i) ∧ colimKi

i−1(f)
)

��

//
∐rn,i
k=1

(
X∧(n−i) ∧ Y ∧i

)

��
colimKn

i−1(f) // colimKn
i (f)

(3.12)

as required.

Let f : X → Y be a morphism in a symmetric monoidal category with pushouts.

For each index 0 ≤ i ≤ n, we set

2n
i (f) = colimKn

i (f) ,
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Since Kn
0 is the diagram consisting of one object X∧n, we have 2n

0 = X∧n. On the

other hand, the nth tuple (1, 1, . . . , 1) is the terminal object of 2n, and Kn
n (f) = Kn(f);

hence we have 2n
n(f) = Y ∧n. Then, the sequence of subdiagrams

Kn
0 (f) ⊂ Kn

1 (f) ⊂ · · · ⊂ Kn
n (f) ,

induce a sequence of morphisms in C ,

X∧n = 2n
0 (f)→ 2n

1 (f)→ · · · → 2n
n(f) = Y ∧n ,

whose composite is nothing but the n-fold product f∧n : X∧n → Y ∧n of f . The above

sequence will be called Künneth tower of f∧n.

Corollary 3.1.15. Let C be a symmetric monoidal category with pushouts. Then, for

every morphism f in C . The symmetric group Σn acts naturally on each object 2n
i (f)

for all i = 1, . . . , n.

Proof. Let us fix an index 0 ≤ i ≤ n. By Lemma 3.1.13, the symmetric group Σn acts

on the poset 2ni , hence this action induces an action on Kn
i (f). For any morphism

(a1, . . . , an)→ (a′1, . . . , a
′
n) in {0, 1}n, we have a commutative square

Kn
i (f)(a1, . . . , an)

σ //

��

Kn
i (f)(aσ(1), . . . , aσ(1))

��
Kn
i (f)(a′1, . . . , a

′
n) σ

// Kn
i (f)(a′σ(1), . . . , a

′
σ(1))

Then, by the universal property of colimit, there is a unique automorphism φσ of 2n
i

such that we have a commutative diagram

Kn
i (f)(a1, . . . , an)

σ //

��

Kn
i (f)(aσ(1), . . . , aσ(1))

��
2n
i (f)

φσ
// 2n

i (f)

where the vertical morphisms are the canonical morphism. Moreover, the map φ :

Σn → Aut(2n
i (f)) given by σ 7→ φσ is a homomorphism of groups. This gives an action

of Σn on 2n
i (f).

Definition 3.1.16. Let (C ,∧) be a symmetric monoidal category. For an object X of

C , we shall write Symn(X) for the quotient X∧n/Σn, if it exists, and call it the nth

fold (categoric) symmetric power of X.
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Let C be a symmetric monoidal category with finite colimits. The previous Corol-

lary allows to take the quotient of 2n
i (f) by the symmetric group Σn for 0 ≤ i ≤ n.

We write

2̃n
i (f) :=2n

i (f)/Σn .

In particular, we have 2̃n
0 (f) = Xn/Σn = SymnX and 2̃n

n(f) = Y n/Σn = SymnY .

Thus we have a following commutative diagram,

Xn = 2n
0 (f)

f∧n

,,
//

��

2n
1 (f) //

��

· · · · · · // 2n
n−1(f) //

��

2n
n(f) = Y n

��
SymnX = 2̃n

0 (f) //

Symnf

22
2̃n

1 (f) // · · · · · · // 2̃n
n−1(f) // 2̃n

n(f) = SymnY

The filtration

Symn(X) = 2̃n
0 (f)→ 2̃n

1 (f)→ · · · → 2̃n
n(f) = Symn(Y )

of Symn(f) will be called Künneth tower of Symn(f).

Example 3.1.17. For any morphism f : X → Y in a model category, we have 22
1(f) =

2(f, f). If f is a cofibration, then

f22 : 2(f, f)→ Y × Y

is a cofibration, see [18].

Proposition 3.1.18. Let

X

��

f // Y

��
X ′

f ′
// Y ′

be a pushout in a symmetric monoidal category with finite colimits. It induces a diagram

Kn
n−1(f) //

��

Y ∧n

Kn
n−1(f ′)
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whose colimit is Y ′∧n. Consequently, we have a cocartesian square

2n
n−1(f)

��

f2n
// Y

��
2n
n−1(f ′)

f ′2n
// Y ′

Proof. See [13].

We recall that the cofibre of a morphism X → Y in a category with terminal object

is denoted by Y/X, see Definition 1.3.1. In the rest of this section, we shall assume

that all categories are pointed.

Corollary 3.1.19. Let C be a symmetric monoidal category with finite colimits. Let

f : X → Y be a morphism in C and put Z = Y/X. Then for any integer n ≥ 1, we

have two natural isomorphisms

Y ∧n/2n
n−1(f) ' Z∧n ,

SymnY/2̃n
n−1(f) ' SymnZ .

Proof. In Proposition 3.1.18, we take f ′ to be the morphism ∗ → Z. The corollary

follows from the preceding proposition, after noticing that 2n
n−1(f ′) = ∗.

Lemma 3.1.20. Let 1 ≤ i ≤ n be two integers. For every morphism f : X → Y in C ,

we have a cocartesian square

Symn−iX ∧ 2̃i
i−1(f)

��

// Symn−iX ∧ SymiY

��
2̃n
i−1(f) // 2̃n

i (f)

(3.13)

Proof. Let us fix n ∈ N. For any 1 ≤ i ≤ n, the diagram X∧(n−i) ∧ Ki
i−1(f) is a

subdiagram of Kn
i−1(f). Then, we have a universal morphism

colim
(
X(n−i) ∧Ki

i−1(f)
)
→ colimKn

i−1(f) .

Notice that colim
(
X(n−i) ∧Ki

i−1(f)
)

= X(n−i) ∧ colimKi
i−1(f), and by definition

2i
i−1(f) = colimKi

i−1(f), 2n
i−1(f) = colimKn

i−1(f). Thus, we get a morphism

X(n−i) ∧2i
i−1(f)→ 2n

i−1(f) ,
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together with a commutative diagram

X∧(n−i) ∧2i
i−1(f)

��

// X∧(n−i) ∧ Y ∧i

��
2n
i−1(f) // 2n

i (f)

This induces a commutative diagram of Σn-objects

corΣn
Σn−i×Σi

(
X∧(n−i) ∧2i

i−1(f)
)

��

// corΣn
Σn−i×Σi

(
X∧(n−i) ∧ Y ∧i

)

��
2n
i−1(f) // 2n

i (f)

In view of diagram (3.12), this square is cocartesian. Finally, taking colimit colim Σn ,

we get the cocartesian square (3.13).

Proposition 3.1.21. Let C be a symmetric monoidal category and let f : X → Y be

a morphism in C with cofibre Z = Y/X. Fix a positive integer n and assume that the

colimit of Kn
i (f) exists for all 0 ≤ i ≤ n. We have the following assertions:

(a) If

X∧n = 2n
0 (f)→ 2n

1 (f)→ · · · → 2n
n(f) = Y ∧n

is the Künneth tower of f∧n, then for each index 1 ≤ i ≤ n, we have a Σn-

equivariant isomorphism

2n
i (f)/2n

i−1(f) ' corΣn
Σn−i×Σi

(X∧(n−i) ∧ Z∧i) .

(b) If

Symn(X) = 2̃n
0 (f)→ 2̃n

1 (f)→ · · · → 2̃n
n(f) = Symn(Y )

is the Künneth tower of Symn(f), then for each index 1 ≤ i ≤ n, we have an

isomorphism

2̃n
i (f)/2̃n

i−1(f) ' Symn−iX ∧ SymiZ .

Proof. By Corollary 3.1.19, we have

Y ∧i/2i
i−1(f) ' Z∧i .

Hence, we obtain a cocartesian square

X∧(n−i) ∧2i
i−1(f)

��

// X∧(n−i) ∧ Y ∧i

��
∗ // X∧(n−i) ∧ Z∧i
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which induces a cocartesian square

corΣn
Σn−i×Σi

(
X∧(n−i) ∧2i

i−1(f)
)

��

// corΣn
Σn−i×Σi

(
X∧(n−i) ∧ Y ∧i

)

��
∗ // corΣn

Σn−i×Σi

(
X∧(n−i) ∧ Z∧i

)
Then, we wet a commutative diagram

corΣn
Σn−i×Σi

(
X∧(n−i) ∧2i

i−1(f)
)

��

// corΣn
Σn−i×Σi

(
X∧(n−i) ∧ Y ∧i

)

��
2n
i−1(f) //

��

2n
i (f)

��
∗ // corΣn

Σn−i×Σi

(
X∧(n−i) ∧ Z∧i

)
This allows to deduce an isomorphism

2n
i (f)/2n

i−1(f) ' corΣn
Σn−i×Σi

(
X∧(n−i) ∧ Z∧i

)
.

This proves item (a). On the other hand, by Lemma 3.1.20, we have a cocartesian

square

Symn−iX ∧ 2̃i
i−1(f)

��

// Symn−iX ∧ SymiY

��
2̃n
i−1(f) // 2̃n

i (f)

Then, one has

2̃n
i (f)/2̃n

i−1(f) '
(

Symn−iX ∧ SymiY
)/(

Symn−iX ∧ 2̃i
i−1(f)

)
' Symn−iX ∧

(
SymiY/2̃i

i−1(f)
)
.

Thus, we get an isomorphism

2̃n
i (f)/2̃n

i−1(f) ' Symn−iX ∧ SymiZ .

This proves item (b).
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3.1.3 Symmetrizable cofibrations

Let C be a (pointed) closed symmetric monoidal model category.

Definition 3.1.22. A morphism f : X → Y in C is called symmetrizable (trivial)

cofibration if the corresponding morphism

f 2̃n : 2̃n
n−1(f)→ SymnY

is a (trivial) cofibration for all integers n ≥ 1.

Notice that the morphism f 2̃1 : 2̃1
0(f)→ Sym1Y is f : X → Y itself. Hence, every

symmetrizable (trivial) cofibration is a (trivial) cofibration.

Definition 3.1.23. A morphism f : X → Y in C is called strongly symmetrizable

(trivial) cofibration if the corresponding morphism

f2n : 2n
n−1(f)→ Y n

is a (trivial) cofibration for all integers n ≥ 1.

Theorem 3.1.24. Let C be a category as before. The class of (strongly) symmetrizable

(trivial) cofibrations in C is closed under pushouts, retracts and transfinite composi-

tions.

Proof. See [13].

Corollary 3.1.25. Suppose that C is also a cofibrantly generated model category with a

set of generating cofibrations I, and suppose that every morphism in I is symmetrizable.

Then, for any integer n ≥ 1 and any cofibrant object X in C , the symmetric power

Symn(X) is also cofibrant.

Proof. See [13].

Theorem 3.1.26 (Gorchinskiy-Guletskĭı). Suppose that C is a closed symmetric monoidal

model category. Let

X
f→ Y → Z

be a cofibre sequence in C with X and Y being cofibrant, and let

Symn(X) = 2̃n
0 (f)→ 2̃n

1 (f)→ · · · → 2̃n
n(f) = Symn(Y )

be the Künneth tower of Symn(f). We have the following assertions:

(a) If f is a symmetrizable cofibration, then for every index i ≤ n the canonical

morphism 2̃n
i−1(f)→ 2̃n

i (f) is a cofibration.

(b) If f is a symmetrizable trivial cofibration, then for every index i ≤ n the canonical

morphism 2̃n
i−1(f)→ 2̃n

i (f) is a trivial cofibration.
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Proof. We refer the reader to [13].

Corollary 3.1.27. Let f be a trivial cofibration between cofibrant objects which is also

symmetrizable as a cofibration in a category C , as before. Then f is a symmetrizable

trivial cofibration if and only if Symn(f) is a trivial cofibration for all n ∈ N.

Proof. See [13].

Theorem 3.1.28 (Gorchinskiy-Guletskĭı). Let C be a closed symmetric monoidal

model category and suppose that it is also cofibrantly generated. Assume that the set

of generating cofibrations and the set of generating trivial cofibrations are both sym-

metrizable. Then the symmetric powers Symn : C → C take weak equivalences between

cofibrant objects to weak equivalences. Consequently, there exist the left derived sym-

metric powers LSymn defined on Ho (C ) for n ∈ N.

Proof. Let us fix a natural number n. By the Ken Brown’s lemma (See Lemma 1.1.15),

it is enough to show that the functor Symn : C → C takes trivial cofibrantion between

cofibrant objects to weak equivalences. Suppose that f : X → Y is a trivial cofibration

between cofibrant objects in C . By virtue of Theorem 3.1.24, one deduces that all

cofibrations and all trivial cofibrations are symmetrizable in C . In particular f is

a symmetrizable trivial cofibration. Hence by Corollary 3.1.27, Symn(f) is a trivial

cofibration, in particular Symn(f) is a weak equivalence as wanted. See [13] for more

details.

3.2 Geometric symmetric powers in the unstable set-up

In the sequel, k will denote a field of arbitrary characteristic, C ⊂ Sch/k will be

an admissible category and S will be the category of Nisnevich sheaves on C , as in

Section2.3.

We recall that the nth fold geometric symmetric power Symn
g (X ) of a sheaf X in

S is the colimit of the functor FX : (h ↓ X ) → S which sends a morphism hU →
X to the representable sheaf hSymnU , see Section 2.3.3. Sometimes, we shall write

colim hX→X hSymnX to mean the colimit of the functor FX . On the other hand, if X

is a pointed sheaf, then the nth fold geometric symmetric power of X is a colimit of

the form colim hX+
→X hSymnX+ , where the colimit is computed in S∗.

3.2.1 Künneth rules

Here, we study the Künneth rules for geometric symmetric powers (see Corollary

3.2.17).
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Let X be an object of ∆opC . The nth fold symmetric power Symn(X) is the

simplicial object on C whose terms are Symn(X)i :=Symn(Xi) for all i ∈ N. Thus,

Symn induces a endofunctor of ∆opC .

Lemma 3.2.1. For each n ∈ N, Symn
g is isomorphic to the left Kan extension of the

composite

∆opC
Symn

// ∆opC
∆oph // ∆opS

along ∆oph.

Proof. Notice that ∆opC is a small category. Let X be a simplicial sheaf and fix a

natural number i. Let us consider the functor FXi
such that Symn

g (Xi) = colimFXi
,

as defined in page 111. Let us consider the functor

JX ,i : (∆opC ↓X )→ (C ↓Xi) ,

given by (∆ophU → X ) 7→ (hUi → Xi). Let ϕ : hV → Xi be a morphism of sheaves.

The morphism ϕ induces a morphism ϕ̃ : ∆V [i] → X . Notice that ∆V [i] coincides

with ∆ophV⊗∆[i], and JX ,i sends the morphism ϕ̃ to a morphism h(V⊗∆[i])i →Xi such

that we have a commutative diagram

hV
ui //

ϕ

  AAAAAAAAAAAAAA h(V⊗∆[i])i

JX ,i(ϕ̃)

{{xxxxxxxxxxxxxxxx

Xi

where ui is the morphism induced by the canonical morphism

V −→
∐
∆[i]i

V = (V ⊗∆[i])i .

Then, the composites of the form

FXi
(ϕ)

FXi
(ui) // (FXi

◦ JX ,i)(ϕ̃) // colim (FXi
◦ JX ,i)

define a cocone with base FXi
and vertex colim (FXi

◦JX ,i). By a simple computation,

one sees that this cocone is universal, so that we have a canonical isomorphism

colim (FXi
◦ JX ,i) ' colimFXi

.

We observe that the colimit of FXi
◦ JX ,i is nothing but the ith term of the simplicial

sheaf Lan∆oph(∆oph ◦ Symn)(X ). Thus, we get a canonical isomorphism

Lan∆oph(∆oph ◦ Symn)(X ) ' Symn
g (X ) ,

for every object X in ∆opS .
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We denote by h+ the canonical functor from C+ to S∗.

Corollary 3.2.2. For each n ∈ N, the nth fold geometric symmetric power Symn
g on

∆opS∗ is isomorphic to the left Kan extension of the composite

∆opC+
Symn

// ∆opC+
∆oph+

// ∆opS∗

along ∆oph+.

Proof. It follows from the previous lemma in view that the canonical functor from

∆opS to ∆opS∗ is left adjoint.

We provide Lemmas 3.2.3, 3.2.4 and Proposition 3.2.5 in order to prove the Künneth

rule for symmetric for schemes (Corollary 3.2.7), that is, for a natural number n and

for two schemes X and Y on an admissible category of schemes, the nth fold symmetric

power Symn(X q Y ) is isomorphic to the coproduct
∐
i+j=n(SymiX × SymjY ). We

recall that for a category C and a finite group G, the category CG is the category of

functors G→ C , where G is viewed as a category. A functor G→ C is identified with a

G-object of C . If H is a subgroup of G, then we the restriction functor resGH : CG → CH

sends a functor G→ C to the composite H ↪→ G→ C . If C has finite coproducts and

quotients under finite groups, then resGH has left adjoint. The left adjoint of resGH is

called corestriction functor, we denoted it by corGH .

Lemma 3.2.3. Let C be a category with finite coproducts and quotients under finite

groups. Let G be a finite group and let H be a subgroup of G. If X is an H-object of

C , then

corGH(X)/G ' X/H .

Proof. Suppose X is an H-object of C . We recall that corG0 (X) coincides with the

coproduct of |G|-copies of X, it is usually denoted by G×X in the literature. Observe

that the group G ×H acts canonically on G ×X. By definition, corGH(X) is equal to

colimH(G×X). One can also notice that colimG(G×X) = X. Then, we have,

corGH(X)/G = colimG corGH(X)

= colimG colimH(G×X)

= colimH colimG(G×X) (change of colimits)

= colimHX .

By definition, X/H is equal to colimHX, thus we obtain that corGH(X)/G is isomorphic

to X/H.
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Lemma 3.2.4. Let C be a symmetric monoidal category with finite coproducts and

quotients under finite groups. Let n, i, j be three natural numbers such that i, j ≤ n and

i + j = n, and let X0, X1 be two objects of C . Then, the symmetric group Σn acts on

the coproduct
∨
k1+···+kn=j Xk1 ∧ · · · ∧Xkn by permuting the indices of the factors, and

one has an isomorphism(∨
k1+···+kn=j Xk1 ∧ · · · ∧Xkn

)/
Σn ' SymiX0 ∧ SymjX1 .

Proof. After reordering of factors in a suitable way, we can notice that the coproduct∨
k1+···+kn=j Xk1 ∧ · · · ∧ Xkn is isomorphic to the coproduct of

(
n
i

)
-copies of the term

X∧i0 ∧X
∧j
1 , in other words, it is isomorphic to corΣn

Σi×Σj
(X∧i0 ∧X

∧j
1 ) which is a Σn-object.

By Lemma 3.2.3, we have an isomorphism(
corΣn

Σi×Σj
(X∧i0 ∧X

∧j
1 )
)/

Σn ' (X∧i0 ∧X
∧j
1 )
/

(Σi × Σj) ,

and the right-hand side is isomorphic to SymiX0∧SymjX1, which implies the expected

isomorphism.

Proposition 3.2.5. Suppose C is a category as in Lemma 3.2.4. Let X0, X1 be two

objects of C . For any integer n ≥ 1, there is an isomorphism

Symn(X0 ∨X1) '
∨

i+j=n

(SymiX0 ∧ SymjX1) . (3.14)

Proof. Let us fix an integer n ≥ 1. We have the following isomorphism,

(X0 ∨X1)∧n '
∨

0≤j≤n

 ∨
k1+···+kn=j

Xk1 ∧ · · · ∧Xkn

 ,

and for each index 0 ≤ j ≤ n, the symmetric group Σn acts by permuting factors on

the coproduct
n∐
j=0

 ∨
k1+···+kn=j

Xk1 ∧ · · · ∧Xkn

 .

Hence, we deduce that (X0 ∨X1)∧n
/

Σn is isomorphic to the coproduct

n∐
j=0

((∨
k1+···+kn=j Xk1 ∧ · · · ∧Xkn

) /
Σn

)
.

Finally, by Lemma 3.2.4, we obtain that Symn(X0∨X1) is isomorphic to the coproduct∨
0≤j≤n(Symn−jX0 ∧ SymjX1), thus we have the isomorphism (3.14).

Definition 3.2.6. Suppose that C is an admissible category. Let X = A+ and Y = B+

be two objects of C+. We denote by X ∨ Y the object (X q Y )+ and by X ∧ Y the

object (X × Y )+. Notice that the category C+ with the product ∧ is a symmetric

monoidal category.
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Corollary 3.2.7. Let C ⊂ Sch/k be an admissible category. Then, for every integer

n ≥ 1 and for any two objects X,Y of C+, we have an isomorphism

Symn(X ∨ Y ) '
∨

i+j=n

(SymiX ∧ SymjY ) .

Proof. It follows from the previous proposition in view that C+ is symmetric monoidal

and has quotients by finite groups.

Remark 3.2.8. Let f be a morphism of the form X → X ∨ Y in C+. Then, for every

integer n ≥ 1, we have a commutative diagram

SymnX
Symn(f) // Symn(X ∨ Y )

��
SymnX //

∨
i+j=n(SymiX ∧ SymjY )

where the right vertical arrow is the isomorphism given in Corollary 3.2.7 and the

bottom arrow is the canonical morphism.

In the following lemma we consider the notations used in Section 3.1.

Lemma 3.2.9. Let C be an admissible category and let ϕ : X → X∨Y be a coprojection

in C+. Then, for every positive integer n, the colimit of the diagram Kn
i (ϕ) exists, and

one has a filtration

X∧n = 2n
0 (ϕ)→ 2n

1 (ϕ)→ · · · → 2n
n(ϕ) = (X ∨ Y )∧n ,

where 2n
i (ϕ) is isomorphic to

∨
n−i≤j≤nX

j ∧Y n−j for all indices 0 ≤ i ≤ n. Moreover,

this filtration induces a filtration

Symn(X) = 2̃n
0 (ϕ)→ 2̃n

1 (ϕ)→ · · · → 2̃n
n(ϕ) = Symn(X ∨ Y ) ,

where each 2̃n
i (ϕ) is isomorphic to

∨
n−i≤j≤n(SymjX ∧ Symn−jY ).

Proof. Since ϕ is a coprojection, Lemma 2.2.39 implies that the ith fold pushout-

product of ϕ exists for all indices i. Hence, by virtue of Proposition 3.1.14 the diagrams

Kn
i (ϕ) exist. Then, by Proposition 3.1.21, the morphisms ϕ∧n and Symn(ϕ) have the

above filtration. Finally, by Corollary 3.2.7, we deduce that the each morphism from

2̃n
i−1(ϕ) to 2̃n

i (ϕ) is isomorphic to the canonical morphism∐
n−(i−1)≤j≤n

(SymjX × Symn−jY )→
∐

n−i≤j≤n
(SymjX × Symn−jY ) ,

as required.
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Example 3.2.10. If we take X to be the point ∗ in the previous lemma, then the

morphism ϕ : ∗ → Y = ∗ ∨ Y induces a filtration

∗ = 2̃n
0 (ϕ)→ 2̃n

1 (ϕ)→ · · · → 2̃n
n(ϕ) = Symn(Y ) ,

where each 2̃n
i (ϕ) is isomorphic to Symi(Y ). In consequence, the morphism ∗ → ∆oph+

Y

induces a Künneth filtration of pointed simplicial sheaves

∗ = Sym0
g(∆

oph+
Y )→ Sym1

g(∆
oph+

Y )→ · · · → Symn
g (∆oph+

Y ) .

Lemma 3.2.11. Let J be a category with finite coproducts and Cartesian products.

Then, for every integer n ≥ 1, the diagonal functor diag : J → J ×n is final (see [26,

page 213]).

Proof. Let A = (A1, . . . , An) be an object of J ×n. We shall prove that the comma

category A ↓ diag, whose objects has the form A → diag(B) for B in J , is nonempty

and connected. We set B :=A1 q · · · q An. For every index 0 ≤ i ≤ n, we have a

canonical morphism Ai → B, then we get a morphism from A to diag(B). Thus,

the comma category A ↓ diag is nonempty. Let B and B′ be two objects of J and

let A = (A1, . . . , An) be an object of J ×n. Suppose that we have two morphisms:

(ϕ1, . . . , ϕn) from A to diag(B) and (ϕ′1, . . . , ϕ
′
n) from A to diag(B′). For every index

0 ≤ i ≤ n, we have a commutative diagram

Ai

ϕ′i

��

ϕi

��

ψi
��

B ×B′

����
B B′

where the dotted arrow exists by the universal property of product. Notice that we get

a morphism (ψ1, . . . , ψn) from A to diag(B ×B′) and a commutative diagram

A

''PPPPPPPPPPPPP

��wwooooooooooooo

diag(B) diag(B ×B′) //oo diag(B′)

Thus, the comma category A ↓ diag is connected.

Lemma 3.2.12. Let X be a sheaf in S . For every integer n ≥ 1, we have an

isomorphism

X ×n ' colim hX→X hXn , (3.15)
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Proof. Let (h ↓ X ) be a comma category and let us consider the functor FX ,n from

(h ↓X )×n to ∆opS defined by(
hX1 →X , . . . , hXn →X

)
7→ hX1 × · · · × hXn .

For every integer n ≥ 1, let us consider the diagonal functor diag from (h ↓ X ) to

(h ↓X )×n. We recall that we have an isomorphism

X ' colim hX→X hX , (3.16)

where the colimit is taken from the comma category with objects hX →X , for X ∈ C

to the category of sheaves. Hence, we deduce an isomorphism

X ×n ' colimFX ,n .

Next, we shall prove that the canonical morphism colim (FX ,n ◦ diag)→ colimFX ,n is

an isomorphism. Let us write Y :=colim (FX ,n ◦ diag) and let µ : FX ,n ◦ diag → ∆Y

be the universal cocone, where ∆Y denotes the constant functor with value Y . We

would like to find a universal cocone τ : FX ,n → ∆Y . The canonical morphisms hXi →
hX1 q · · · q hXn , for 1 ≤ i ≤ n, induce a morphism(

hX1 →X , . . . , hXn →X
)
−→ diag

(
hX1 q · · · q hXn →X

)
.

Hence, the composite

FX ,n

(
hX1 →X , . . . , hXn →X

)
−→ (FX ,n ◦ diag)

(
hX1 q · · · q hXn →X

)
−→ Y ,

(3.17)

where the object in the middle is equal to the nth fold product (hX1q· · ·qhXn)×n, and

the arrow on the right-hand side is the morphism induced by the universal cocone µ.

Now, any morphism from (hX1 →X , . . . , hXn →X )→ (hX′1 →X , . . . , hX′n →X ) is

induced by a collection of morphisms Xi → X ′i for i = 1, . . . , n; and they provide the

following diagram

hX1 × · · · × hXn //

��

(hX1 q · · · q hXn)×n

��

// Y

hX′1 × · · · × hX′n
// (hX′1 q · · · q hX′n)×n // Y

making the composite (3.17) functorial. Thus, we obtain a cocone τ : FX ,n → ∆Y . It

remains to prove that this cocone is universal. Indeed, let λ : FX ,n → ∆Z be another

cocone. Then, the composite λ ◦ diag : FX ,n ◦ diag → ∆Z is also a cocone. By the

universal property of Y , there exists a morphism f : Y → Z such that ∆f ◦µ = λ◦diag.

Hence, we get ∆f ◦ τ = λ . This proves that τ is a universal cocone. Notice that the
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composite functor FX ,n ◦ diag is given by (hX → X ) 7→ hXn . Finally, composing the

following isomorphisms

X ×n ' colimFX ,n ' colim (FX ,n ◦ diag) = colim hX→X hXn , (3.18)

we get the required isomorphism.

Lemma 3.2.13. Let F , G be two objects in S . For any integer n ≥ 1, there is an

isomorphism

Symn
g (F qG) '

∐
i+j=n

(Symi
gF × Symj

gG) .

Proof. Let us fix an integer n ≥ 1. By Corollary 3.2.7, for any two objects X and Y of

C , we have an isomorphism

Symn(X q Y ) '
∐

i+j=n

(SymiX × SymjY ) .

Since the Yoneda embedding h : C → S preserves finite product and coproduct, we

get an isomorphism

hSymn(XqY ) '
∐

i+j=n

(
hSymiX × hSymjY

)
. (3.19)

By definition, we have Symn
g (hX) = hSymn(X), Symn

g (hY ) = hSymn(Y ) and Symn
g (hXqY )

is equal to hSymn(XqY ). Replacing all these in (3.19), we get an isomorphism

Symn
g (hX q hY ) '

∐
i+j=n

(
Symi

g(hX)× Symj
g(hY )

)
. (3.20)

Let us consider the functor Φ1 : C×C → S which sends a pair (X,Y ) to Symn
g (hXqhY )

and the functor Φ2 : C × C → S which sends a pair (X,Y ) to
∐
i+j=n(Symi

ghX ×
Symj

ghY ). Let

LanΦ1,LanΦ2 : S ×S → S

be the left Kan extension of Φ1 and Φ2, respectively, along the embedding h× h from

C × C into S ×S . Since S is an extensive category, it follows that the coproduct

functor (C ↓ F ) × (C ↓ F ) → (C ↓ F qG) is an equivalence of categories; hence, one

deduces that the functor LanΦ1 is nothing but the functor that sends a pair (F,G) to

Symn
g (F q G). By [5, Prop. 3.4.17] S is a Cartesian closed, hence, one deduces that

LanΦ2 sends a pair (F,G) to
∐
i+j=n(Symi

gF ×Symj
gG). Finally, from the isomorphism

(3.20), we have Φ1 ' Φ2, which implies that LanΦ1 is isomorphic to LanΦ2. This proves

the lemma.

Corollary 3.2.14 (Künneth rule). Let X , Y be two objects in ∆opS . For any integer

n ≥ 1, there is an isomorphism

Symn
g (X q Y ) '

∐
i+j=n

(Symi
gX × Symj

gY ) .
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Proof. It follows from Lemma 3.2.13.

Remark 3.2.15. Let f : X → X ∨ Y be a coprojection in ∆opS∗. Using left Kan

extensions, we deduce from Remark 3.2.8 that for every integer n ≥ 1, we have a

commutative diagram

Symn
gX

Symn(f) // Symn
g (X ∨ Y )

��
Symn

gX //
∨
i+j=n(Symi

gX ∧ Symj
gY )

where the right vertical arrow is the isomorphism given in Corollary 3.2.14 and the

bottom arrow is the canonical morphism.

We recall that ∆Spec(k)[0] is the terminal object of ∆opS . From the definition, we

observe that the functor Symn
g preserves terminal object ∆Spec(k)[0], for n ∈ N. Hence

the endofunctor Symn
g of ∆opS extends to an endofunctor of ∆opS∗, denoted by the

same symbol Symn
g if no confusion arises.

Lemma 3.2.16. Let F , G be two objects in S∗. For any integer n ≥ 1, there is an

isomorphism

Symn
g (F ∨G) '

∨
i+j=n

(Symi
gF ∧ Symj

gG) .

Proof. The proof is similar to proof of Lemma 3.2.13. In this case we define two functor

Φ1 and Φ2 from C+×C+ to S∗ such that Φ1 takes a pair (X+, Y+) to Symn
g (hX+ ∨hY+)

and Φ2 takes a pair (X+, Y+) to
∨
i+j=n(Symi

ghX+ ∧ Symj
ghY+). Hence we prove that

the left Kan extensions of Φ1 and Φ2, along the canonical functor C+ × C+ → S∗, are

isomorphic.

Corollary 3.2.17 (Pointed version of Künneth rule). Let X , Y be two objects in

∆opS∗. For any integer n ≥ 1, there is an isomorphism

Symn
g (X ∨ Y ) '

∨
i+j=n

(Symi
gX ∧ Symj

gY ) .

Proof. It is a consequence of Lemma 3.2.16.

Proposition 3.2.18. For each n ∈ N, the functor Symn
g preserves termwise coprojec-

tions.

Proof. It follows from Lemma 3.2.13 for the unpointed case and from Lemma 3.2.16

for the pointed case.
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3.2.2 Künneth towers

Let f : X → Y be a morphism of pointed simplicial sheaves. A filtration of Symn
g (f)

in ∆opS∗,

Symn
g (X ) = L n

0 (f)→ L n
1 (f)→ · · · → L n

n (f) = Symn
g (Y ) ,

is called (geometric) Künneth tower of Symn
g (f), if for every index 1 ≤ i ≤ n, there is

an isomorphism

cone
(
L n
i−1(f)→ L n

i (f)
)
' Symn−i

g (X ) ∧ Symi
g(X )

in H∗(CNis,A1).

Later, we shall prove that the nth fold geometric symmetric power of an I+
proj-cell

complex has canonical Künneth towers, see Proposition 4.1.2. In the next paragraphs,

∆oph+ will denote the canonical functor from ∆opC+ to ∆opS∗.

Definition 3.2.19. A pointed simplicial sheaf is called representable, if it is isomorphic

to a simplicial sheaf of the form ∆oph+
X , where X is a simplicial object on C .

Example 3.2.20. For any object U in C and n ∈ N, the simplicial sheaves ∆U [n]+

and ∂∆U [n]+ are both representable.

Proposition 3.2.21. For every n ∈ N, the nth fold geometric symmetric power of a

morphism of representable simplicial sheaves induced by a termwise coprojection has a

canonical Künneth tower.

Proof. Let ϕ : X → Y be a termwise coprojection in ∆opC+ and denote by Z the cofibre

Y/X. By Lemma 3.2.9, there is a filtration

X∧n = 2n
0 (ϕ)→ 2n

1 (ϕ)→ · · · → 2n
n(ϕ) = Y ∧n .

Since C is admissible, ∆opC+ allows quotients by finite groups. Then, the above filtra-

tion induces a filtration

Symn(X) = 2̃n
0 (ϕ)→ 2̃n

1 (ϕ)→ · · · → 2̃n
n(ϕ) = Symn(Y ) , (3.21)

such that, for every index 1 ≤ i ≤ n, there is an isomorphism

2̃n
i /2̃

n
i−1 ' Symn−i(X) ∧ Symi(Z)

Since h preserves finite coproducts and products, the filtration (3.21) induces a filtration

of Symn
g (∆oph+

ϕ ),

∆oph+
2̃n0 (ϕ)

−→ ∆oph+
2̃n1 (ϕ)

−→ · · · −→ ∆oph+
2̃nn(ϕ)

,

which is a Künneth tower of Symn
g (∆oph+

ϕ ).
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Directed colimits of representable simplicial sheaves

We recall that a directed colimit is the colimit of a directed diagram, i.e. a functor

whose source is a directed set (see Definition 1.1.20).

Definition 3.2.22. We shall denote by (∆opC+)# the full subcategory of ∆opS∗ gen-

erated by directed colimits of representable simplicial sheaves (Definition 3.2.19).

Proposition 3.2.23. Let f : X → X ∨ Y be a coprojection of simplicial sheaves,

where X and Y are in (∆opC+)#. Then, for every n ∈ N, the Künneth tower of

Symn
g (f) is a sequence

L n
0 (f) −→ L n

1 (f) −→ · · · −→ L n
n (f) ,

such that each term L n
i (f) is isomorphic to the coproduct∨

(n−i)≤l≤n

(Syml
gX ∧ Symn−l

g Y ) . (3.22)

Proof. Let us write X :=colim d∈D∆oph+
Xd

and Y :=colim e∈E∆oph+
Ye

, where Xd and

Ye are in ∆opC+. Then, the coproduct X ∨ Y is isomorphic to the colimit

colim (d,e)∈D×E(∆oph+
Xd
∨∆oph+

Ye
) ,

and f is the colimit of the coprojections ∆oph+
Xd
→ ∆oph+

Xd
∨ ∆oph+

Ye
over all pairs

(d, e) in D×E. Let us write ϕd,e for the coprojection Xd → Xd ∨Ye. By Lemma 3.2.9,

the morphism Symn(ϕd,e) has a Künneth tower whose ith term has the form

2̃i(ϕd,e) '
∨

(n−i)≤l≤n

(SymlXd ∧ Symn−lYe) .

Hence, we have an isomorphism

∆oph+2̃n
i (ϕd,e) '

∨
(n−i)≤l≤n

(
Syml

g∆
oph+

Xd
∧ Symn−l

g ∆oph+
Ye

)
.

Taking colimit over D × E, we get that

L n
i (f) :=colim (d,e)∈D×E∆oph+

2̃ni (ϕd,e)

is isomorphic to the coproduct (3.22), as required.

Lemma 3.2.24. The subcategory (∆opC+)# is closed under directed colimits.

Proof. Let X : I → (∆opC+)# be a directed functor. We aim to prove that colim X

is an object of (∆opC+)#. Indeed, there exists a collection of directed sets {Ji | i ∈ I},
such that, each object X (i) is the colimit of a directed diagram Xi : Ji → ∆opS∗
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whose values are in the image of the functor ∆oph+. We set J :=∪i∈I Ji, note that it is

also a directed set. Let L be the set consisting of pairs (j, i) ∈ J × I such that j ∈ Ji.
The preorder on J × I, induces a preorder on L, so it is also an directed set. We define

a diagram Y : L → ∆opS∗ that assigns an index (j, i) ∈ L to the object Xi(j). We

have

colim X = colim i∈IX (i) ' colim i∈Icolim j∈JiXi(j) ' colim (j,i)∈LXi(j) = colim Y .

Therefore, colim X is a directed colimit of representable simplicial sheaves.

Lemma 3.2.25. A morphism between representable simplicial sheaves has the form

∆oph+
ϕ , where ϕ is a morphism in ∆opC+.

Proof. Suppose that X = ∆oph+
X and Y = ∆oph+

Y , where X and Y are two objects

of ∆opC+. For every n ∈ N, the morphism fn : Xn → Yn is a morphism of the

form h+
Xn
→ h+

Yn
, and by Yoneda’s lemma this morphism is canonically isomorphic

to morphism of the form h+
ϕn , where ϕn : Xn → Yn is a morphism in C+. Now, let

θ : [m]→ [n] be a morphism in ∆. We have a commutative square

h+
Xn

θ∗X

��

h+
ϕn // h+

Yn

θ∗Y

��
h+
Xm h+

ϕm

// h+
Ym

where the vertical morphisms are the morphisms induced by θ. By Yoneda’s lemma,

the morphism θ∗X is canonically isomorphic to a morphism of the form hθ∗X , where

θ∗X : Xn → Xm is a morphism in C . By the same reason, θ∗Y is canonically isomorphic

to a morphism of the form hθ∗Y , where θ∗Y : Yn → Ym is a morphism in C . Moreover,

we have a commutative diagram

Xn

θ∗X

��

ϕn // Yn

θ∗Y

��
Xm ϕm

// Ym

This shows that the morphisms ϕn, for n ∈ N, define a morphism ϕ : X → Y in ∆opC+

such that f is canonically isomorphic to ∆oph+
ϕ .
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Lemma 3.2.26. Let

A

f

��

g //X

f ′

��
B

g′
// Y

(3.23)

be a cocartesian in ∆opS∗, where f is the image of a termwise coprojection in ∆opC+

through the functor ∆oph+. One has the following assertions:

(a) If X is a representable simplicial sheaf, then Y is so, and f ′ is the image of a

termwise coprojection in ∆opC+ through the functor ∆oph+.

(b) Suppose that A and B are compact objects. If X is in (∆opC+)#, then so is Y .

Moreover, if X is a directed colimit of representable simplicial sheaves which are

compact, then so is Y .

Proof. (a). By hypothesis, there are a termwise coprojection ϕ : A → B and a mor-

phism ψ : A → X in ∆opC+ such that f = ∆oph+
ϕ and g = ∆oph+

ψ . Since ϕ is a

termwise coprojection, we have a cocartesian square

A

ϕ

��

ψ // X

ϕ′

��
B

ψ′
// Y

in ∆opC+, where ϕ′ is a termwise coprojection. As h preserves finite coproducts, we

deduce that Y is isomorphic to ∆oph+
Y and f ′ = ∆oph+

ϕ′ .

(b). Suppose that X is the colimit of a directed diagram {Xd}d∈D, where Xe is

a representable simplicial sheaf. Since A is compact, there exists an element e ∈ D
such that the morphism g factors through an object Xe. For every ordinal d ∈ D with

e ≤ d, we consider the following cocartesian square

A

f

��

//Xd

��
B // B ∨A Xd

By item (a), the simplicial sheaf B qA Xd is representable. Therefore, we get a
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cocartesian square

A

f

��

g // colim d∈DXd

��
B // colim e≤d

d∈D
(B ∨A Xd)

as required.

Lemma 3.2.27. Every I+
proj-cell complex of ∆opS∗ is the colimit of a directed diagram

of the form {Xd}d∈D such that, for d ≤ d′ in D, the corresponding morphism from

Xd to Xd′ is a termwise coprojection of compact representable simplicial sheaves. In

particular, every I+
proj-cell complex of ∆opS∗ is in (∆opC+)#.

Proof. Notice that the domain and codomain of the elements of I+
proj are compact. Since

an element of I+
proj-cell is a transfinite composition of pushouts of element of I+

proj, the

lemma follows by transfinite induction in view of Lemma 3.2.26 (b).

Infinite geometric symmetric powers

Let X be a pointed simplicial sheaf in (∆opC+)#. Then, in view of Example 3.2.10,

we deduce a sequence,

∗ −→ Sym1
g(X ) −→ Sym2

g(X ) −→ · · · · · · −→ Symn
g (X ) −→ · · · .

We define

Sym∞g (X ) :=colim n∈NSymn
g (X ) .

Proposition 3.2.28. We have an isomorphism

Sym∞g (X ∨ Y ) ' Sym∞g (X ) ∧ Sym∞g (Y ) .

Proof. Since N is filtered, the product Sym∞g (X )∧ Sym∞g (Y ) can be computed as the

colimit

colim i∈N,j∈NSymi
g(X ) ∧ Symj

g(X ) .

By Corollary 3.2.17, for every n ∈ N, the geometric symmetric power Symn
g (X ∨ Y )

is isomorphic to the coproduct
∨
i+j=n(Symi

gX ∧ Symj
gY ). Hence, the composites

Symi
g(X ) ∧ Symj

g(X ) −→
∨

i+j=n

(Symi
gX ∧ Symj

gY )
∼−→ Symn

g (X ∨ Y ) ,

for (i, j) ∈ N2, induce a morphism α : Sym∞g (X ) ∧ Sym∞g (Y ) → Sym∞g (X ∨ Y ). On

the other hand, for a pair of indices p, q ≥ n, we have a canonical morphism from the

coproduct
∨
i+j=n(Symi

gX ∧ Symj
gY ) to Symp

gX ∧ Symq
gY . Hence, the composite

Symn
g (X ∨ Y )

∼−→
∨

i+j=n

(Symi
gX ∧ Symj

gY ) −→ Symp
g(X ) ∧ Symq

g(X )
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induce a morphism β : Sym∞g (X ∨Y )→ Sym∞g (X ). From the constructions of α and

β, one observes that they are mutually inverses.

3.2.3 Geometric symmetric powers of radditive functors

Let k be a field and let C ⊂ Sch/k be an admissible category (Definition 2.3.1). As in

Definition 2.3.31, for any integer n ≥ 1, the left Kan extension induces a functor

Symn
rad,g : Rad(C )→ Rad(C )

such that there is a diagram

C
Symn

//

h

��

C

h

��
Rad(C )

Symn
rad,g

// Rad(C )

(3.24)

where h is the functor is the Yoneda embedding. That is, the left Kan extension

Lanh(h◦Symn) : Rad(C )→ Rad(C ) of h◦Symn along h along, as shown in the following

diagram

C
h◦Symn

//

h

��

Rad(C )

Rad(C )

Lanh(h◦Symn)

66mmmmmmmmmmmmmmmmmmmmmmmm

More explicitly, for a radditive functor X , Symn
rad,g(X ) is defined as follows. If h ↓X

is the comma category with objects hU →X for U ∈ C , and if FX : h ↓X → Rad(C )

is the functor defined by

(hU →X ) 7→ hSymnU ,

then, we have

Symn
rad,g(X ) = colimFX .

Definition 3.2.29. The above left Kan extension induces a functor

Symn
rad,g : ∆opRad(C )→ ∆opRad(C )

and we called the nth geometric symmetric power of radditive functors.

Let aNis be the left adjoint of the forgetful functor ∆opS → ∆opRad(C ). For a

radditive functor we write X aNis instead of aNis(X ).

The following proposition shows the connection between geometric symmetric pow-

ers of simplicial Nisnevich sheaves and geometric symmetric powers of simplicial rad-

ditive functors defined in [40].
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Proposition 3.2.30. For every simplicial radditive functor X , we have an isomor-

phism

(Symn
rad,g(X ))aNis ' Symn

g (X aNis) .

Proof. It is enough to prove for radditive functors and Nisnevich sheaves, but it follows

since geometric symmetric powers are expressed in terms of colimits and they commute

with a left adjoint functor.

Lemma 3.2.31. Let X , Y be two objects in Rad(C ). For any integer n ≥ 1, there is

an isomorphism

Symn
g (X

rad
q Y ) '

∐
i+j=n

(Symi
gX × Symj

gY ) .

Proof. The proof is similar to the proof of Lemma 3.2.13.

Corollary 3.2.32. Let X , Y be two objects in Rad(C )∗. For any integer n ≥ 1, there

is an isomorphism

Symn
g (X ∨ Y ) '

∨
i+j=n

(Symi
gX ∧ Symj

gY ) .

Proof. It follows from the previous lemma, see also [40, Lemma 2.15].

3.3 Geometric symmetric powers of motivic spectra

In this section, we define a stable version of the unstable geometric symmetric powers of

motivic spaces defined in Section 2.3.3. We show that the stable geometric symmetric

powers extend naturally the unstable ones, see Proposition 3.3.4 and Corollary 3.3.10.

3.3.1 Constructions

Let C ⊂ Sch/k be an admissible category as in the previous sections. The category

∆opC+ is symmetric monoidal. For two simplicial objects X and Y , the product X ∧Y
is the simplicial object such that each term (X∧Y )n is given by the product Xn∧Yn, see

Definition 3.2.6. If X = (X0, X1, X2, . . . ) and Y = (Y0, Y1, Y2, . . . ) are two symmetric

sequences on ∆opC+, then we have a product X ⊗ Y which given by the formula

(X ⊗ Y )n =
∨

i+j=n

corΣn
Σi×Σj

(Xi ∧ Yj) .

For every symmetric sequence X = (X0, X1, X2, . . . ) on the category ∆opC+ and for

every n ∈ N, there exists the quotient X⊗n/Σn in the category of symmetric sequences

on ∆opC+. For every p ∈ N, we have

(X⊗n)p =
∨

i1+···+in=p

cor
Σp
Σi1×···×Σin

(Xi1 ∧ · · · ∧Xin) ,

150



and the symmetric group Σn acts on (X⊗n)p by permutation of factors. As C+ allows

quotients under finite groups, the quotient (X⊗n)p/Σn is an object of C+ for all p ∈ N.

Notice that the 0th slice of X⊗n/Σn is nothing but the usual nth symmetric power

Symn(X0) = X∧n0 /Σn in C+.

Let us fix an object S of ∆opC+. A symmetric S-spectrum on ∆opC+ is a sequence

of Σn-objects Xn in ∆opC+ together with Σn-equivariant morphisms Xn ∧ S → Xn+1

for n ∈ N, such that the composite

Xm ∧ S∧n → Xm+1 ∧ S∧(n−1) → · · · → Xm+n

is Σm+n-equivariant for couples (m,n) ∈ N2.

Terminology. We denote by SptS(∆opC+) the category of symmetric S-spectra on

the category ∆opC+.

We have a functor F0 from ∆opC+ to SptS(∆opC+) that takes an object X of

∆opC+ to the symmetric S-spectrum of the form (X,X ∧ S,X ∧ S∧2, . . . ). We have a

commutative diagram up to isomorphisms

C+

Const

��

Symn

// C+

Const

��
∆opC+

Symn

//

F0

��

∆opC+

F0

��
SptS(∆opC+)

Symn
S

// SptS(∆opC+)

Let T be the pointed simplicial sheaf (P1,∞) and let T ′ be the pointed simplicial sheaf

P1
+ in ∆opS∗. We recall that SptT (k) denotes the category of symmetric T -spectra and

SptT ′(k) denotes the category of symmetric T ′-spectra on the category ∆opS∗. The

canonical functor ∆oph+ : ∆opC+ → ∆opS∗ induces a functor

H ′ : SptP1
+

(∆opC+)→ SptT ′(k) ,

that takes a symmetric P1
+-spectrum (X0, X1, . . . ) to the symmetric T ′-spectrum

(∆oph+
X0
,∆oph+

X1
, . . . ) .

Since C is a small category, the category ∆opC+ is also small. Hence, the category

SptP1
+

(∆opC+) is so.

Let f : T ′ → T be the canonical morphism of simplicial sheaves. This morphism

induces a morphism of commutative monoids sym(T ′)→ sym(T ). In particular, sym(T )

can be seen as a symmetric T ′-spectrum.
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For any two symmetric T ′-spectra X and Y , we write X ∧sym(T ′) Y for the co-

equalizer of the diagram

X ∧ sym(T ′) ∧ Y
//
//X ∧ Y

induced by the canonical morphisms X ∧ sym(T ′) → X and sym(T ′) ∧ Y → Y .

For every symmetric T ′-spectrum X , the symmetric sequence X ∧sym(T ′) sym(T ) is a

symmetric T -spectrum. We have a functor

(−) ∧sym(T ′) sym(T ) : SptT ′(k) −→ SptT (k) .

Its right adjoint is the restriction functor resT/T ′ that sends a symmetric T -spectrum

X to X itself thought as a symmetric T ′-spectrum via the morphism f : T ′ → T . Let

H : SptP1
+

(∆opC+)→ SptT (k)

be the composition of H ′ with the functor (−) ∧sym(T ′) sym(T ). We have a diagram

∆opS∗

Fn

��

∆opS∗

Fn

��
SptT ′(k) //

Evn

OO

SptT (k)

Evn

OO

Let U be an object in SptP1
+

(∆opC+) and let n be a positive integer. The canonical

morphisms U ⊗ sym(P1
+)→ U and sym(P1

+)⊗ U → U induce a diagram of the form

U ⊗ sym(P1
+)⊗ U ⊗ · · · ⊗ sym(P1

+)⊗ U
//

//

//

//

//
//· · · · · · U⊗n .

On the product of left-hand side, U appears n times. The symmetric group acts on

this product by permuting of factors of U . Hence, we obtain a diagram

H
((
U ⊗ sym(P1

+)⊗ U ⊗ · · · ⊗ sym(P1
+)⊗ U

)
/Σn

) //

//

//

//

//
//· · · · · · H(U⊗n/Σn) . (3.25)

This diagram can be seen as a functor from the category {0, 1}, with two objects and

n non trivial arrows 0 → 1, to the category SptT (k). For instance, when n = 2, one

can think of this diagram as a coequalizer diagram.

Stable geometric symmetric powers

For a spectrum X , we denote by (H ↓ X ) the comma category whose objects are

arrows of the form H(U)→X for all U in SptP1
+

(∆opC+). Let

FX : (H ↓X )→ SptT (k)

be the functor which sends a morphism H(U) → X to the symmetric T -spectrum

colimit of the diagram (3.25).
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Definition 3.3.1. We define Symn
g,T (X ) to be the colimit of the functor FX . The

functor Symn
g,T is called the nth-fold (stable) geometric symmetric power of symmetric

T -spectra.

Our constructions above are summarized in the following diagram:

C+
Symn

//

Const

��

C+

Const

��
∆opC+

F0

��

Symn
P1
+ //

∆oph+

''PPPPPPPPPPP
∆opC+

F0

��

∆oph+

''PPPPPPPPPPP

∆opS∗

Σ∞T

��

Symn
g

// ∆opS∗

Σ∞T

��

SptP1
+

(∆opC+) //

H ''OOOOOOOOOO
SptP1

+
(∆opC+)

H

''OOOOOOOOOO

SptT (k)
Symn

g,T // SptT (k)

(3.26)

Next, we shall study the essential properties of geometric symmetric powers.

Lemma 3.3.2. Let U be an object in SptP1
+

(∆opC+) and let n be a positive integer.

We have a canonical morphism ϑnU : Symn
TH(U)→ Symn

g,TH(U).

Proof. The diagram (3.25) yields into a commutative diagram(
H(U) ∧ sym(T ) ∧H(U) ∧ · · · ∧ sym(T ) ∧H(U)

)/
Σn

//

//

//

//

//
//

��

· · · · · · H(U)∧n/Σn

��
H
((
U ⊗ sym(P1

+)⊗ U ⊗ · · · ⊗ sym(P1
+)⊗ U

)
/Σn

) //

//

//

//

//
//· · · · · · H(U⊗n/Σn)

(3.27)

where the vertical morphisms are the canonical morphisms. By taking colimit on the

above diagram, we obtain a morphism from Symn
TH(U) to Symn

g,TH(U).

We recall that ∆oph+ denotes the canonical functor from ∆opC+ to ∆opS∗.

Lemma 3.3.3. Let X = (X0,X1, . . . ) be a symmetric T -spectrum in SptT (k). Then,

the functor Evn : (H ↓X )→ (∆oph+ ↓Xn) is final.
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Proof. Suppose that it is given a morphism ∆oph+
U → Xn, where U is an object

of ∆opC . By adjunction, this morphism corresponds to a morphism of T -spectra

Fn(∆oph+
U )→X . Since Fn ◦∆oph+ = H ◦ Fn, we have a morphism H(Fn(U))→X .

The unit morphism ∆oph+
U → (Evn ◦ Fn)(∆oph+

U ) gives a commutative diagram

∆oph+
U

""DDDDDDDDDDDDDDD
// (Evn ◦ Fn)(∆oph+

U )

yyrrrrrrrrrrrrrrrrrrr

Xn

where (Evn ◦Fn)(∆oph+
U ) = ∆oph+

corΣn
Σ0

(U)
. Now, suppose that there are two morphisms

H(X) → X and H(X ′) → X where X and X ′ are in SptP1
+

(∆opC+). We have a

commutative diagram

X

����

��
H(X) ∨H(X ′)

!!}}
H(X) H(X ′)

where the dotted arrow exists by the universal property of coproduct. As H(X ∨X ′)
is isomorphic to H(X) ∨H(X ′), the above diagram induces a commutative diagram

Xn

����

��
∆oph+

Xn∨X′n

  ~~
∆oph+

Xn
∆oph+

X′n

This proves that the required functor is final [26, page 213].

Proposition 3.3.4. Let n be a natural number. For every symmetric T -spectrum X

in SptT (k), we have a canonical isomorphism

Ev0 ◦ Symn
g,T (X ) ' Symn

g ◦ Ev0(X ) .

154



Proof. Let U be an object in SptP1
+

(∆opC+). Since Ev0(sym(P1
+)) = Spec(k). Applying

functor Ev0 to the diagram (3.25), we obtain diagram consisting of identity morphisms

of ∆oph+
U∧n0 /Σn

→ ∆oph+
U∧n0 /Σn

. Hence, the colimit of this diagram is ∆oph+
U∧n0 /Σn

itself.

Thus, we have

Ev0 ◦ Symn
g,T (X ) = colimH(U)→X ∆oph+

U∧n0 /Σn
.

By Lemma 3.3.3, the right-hand side is isomorphic to

colim ∆oph+
U0
→Ev0(X )∆

oph+
U∧n0 /Σn

,

and by Corollary 3.2.2, the latter is isomorphic to Symn
g ◦ Ev0(X ).

Corollary 3.3.5. For every simplicial sheaf X in ∆opS∗, there is a canonical iso-

morphism

Ev0(Symn
g,T (Σ∞T X )) ' Symn

g (X ) .

Proof. It follows from the precedent proposition in view that Ev0(Σ∞T X ) is equal to

X .

We denote by Symn
T the categoric symmetric power in SptT (k), that is, for a sym-

metric T -spectrum X , Symn
T (X ) is the quotient of the nth fold product X ∧n by the

symmetric group Σn.

Lemma 3.3.6. We have a commutative diagram

∆opS∗
Symn

//

Σ∞T

��

∆opS∗

Σ∞T

��
SptT (k)

Symn
T

// SptT (k)

Proof. Let X be a pointed simplicial sheaf in ∆opS∗. By [18, Th. 6.3], the functor

Σ∞T : ∆opS∗ → SptT (k) is a monoidal Quillen functor. Hence, for n ∈ N, the suspension

Σ∞T (X ∧n) is isomorphic to the product Σ∞T (X )∧n. Since Σ∞T commutes with colimits,

we have

Σ∞T (SymnX ) = Σ∞T (X ∧n/Σn)

' Σ∞T (X ∧n)/Σn

' Σ∞T (X )∧n/Σn

' Symn
T (Σ∞T X ) .

This proves the lemma.
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Corollary 3.3.7. For every simplicial sheaf X in ∆opS∗, we have an isomorphism

(Ev0 ◦ Symn
T ◦ Σ∞T )(X ) ' Symn(X ) .

Proof. It follows from the previous lemma in view that Ev0(Σ∞T Y ) = Y for a pointed

simplicial sheaf Y .

For a symmetric T -spectrum X , we shall write ϑn(X ) for ϑnX .

Corollary 3.3.8. Let X be a pointed simplicial sheaf in ∆opS∗. If the natural mor-

phism ϑnT (Σ∞T X ) : Symn
T (Σ∞T X ) → Symn

g,T (Σ∞T X ) is a stable A1-weak equivalence,

then the natural morphism Symn(X )→ Symn
g (X ) is an A1-weak equivalence.

Proof. In virtue of Corollary 3.3.7 and Proposition 3.3.4, we have a commutative dia-

gram

Symn(X )
ϑn(X ) //

��

Symn
g (X )

��
Ev0(Symn

T (Σ∞T X ))
Ev0(ϑnT (Σ∞T X ))

// Ev0(Symn
g,T (Σ∞T X ))

(3.28)

where the vertical morphisms are isomorphisms. Since ϑnT (Σ∞T X ) is a stable A1-weak

equivalence, the morphism Ev0(ϑnT (Σ∞T X )) is an A1-weak equivalence. Therefore, ϑnX
is an An-weak equivalence.

Proposition 3.3.9. Let X and object of ∆opC+. We have an isomorphism

Symn
g,TΣ∞T (∆oph+

X) ' Σ∞T Symn
g (∆oph+

X) .

Proof. We have that Σ∞T (∆oph+
X) = H(F0(X)), hence

Symn
g,TΣ∞T (∆oph+

X) = Symn
g,TH(F0(X)) .

By definition, Symn
g,TH(F0(X)) is the coequalizer of the diagram (3.25) in which U =

F0(X). One has,

H
(
F0(X)⊗n/Σn

)
' H

(
F0(X∧n/Σn)

)
= Σ∞T

(
∆oph+

SymnX

)
= Σ∞T Symn

g (∆oph+
X) .

Since sym(P1
+) = F0(Spec(k)+), the object on left-hand side of diagram (3.25) is nothing

but H
(
F0(X)⊗n/Σn

)
and the arrows are the identities. Therefore, the colimit of this

diagram is H
(
F0(X)⊗n/Σn

)
which is isomorphic to Σ∞T Symn

g (∆oph+
X).

Corollary 3.3.10. For any simplicial sheaf X in S∗, one has an isomorphism

Symn
g,T (Σ∞T X ) ' Σ∞T Symn

g (X ) .
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Proof. It is a consequence of the previous proposition in view of Corollary 3.2.2 and

Lemma 3.3.3.

Let n ∈ N. For a symmetric sequence X = (X0,X1, . . . ), we define Symn
`,T ′(X ) to

be the symmetric sequence
(

Symn
g (X0), Symn

g (X1), . . .
)
, and call it the nth fold level

geometric symmetric powers of X . From the definition, we have

Evi(Symn
`,T (X )) = Symn

g (Evi(X )) ,

for i ∈ N.

Lemma 3.3.11. For any symmetric T ′-spectrum X = (X0,X1, . . . ), the nth level

geometric symmetric power of X is a symmetric T ′-spectrum.

Proof. Let us consider a symmetric T -spectrum X = (X0,X1,X2, . . . ). For a k-

scheme U in C , we define a morphism of k-schemes from Un × P1 to (U × P1)n as the

composite

Un × P1
id×∆P1 // Un × (P1)n // (U × P1)n

where ∆P1 is the diagonal morphism and the second arrow is the canonical isomorphism.

This morphism induces a morphism from Symn(U)×P1 to Symn(U ×P1). Let us fix a

natural number i. To construct a natural morphism Symn
g (Xi) ∧ P1

+ → Symn
g (Xi+1),

it is enough to construct a morphism Symn
g (Xi) × P1 → Symn

g (Xi+1) considered as

unpointed sheaves. Any morphism hU → Xi induces a morphism hU×P1 → Xi × hP1 .

Composing with the preceding morphism, we obtain a morphism hU×P1 → Xi+1.

Hence, in view of the above morphism Symn(U) × P1 to Symn(U × P1), we deduce a

morphism from colim hU→Xi
hSymn(U)×P1 to colim hV→Xi+1

hSymn(V ). This gives a mor-

phism from Symn
g (Xi)×P1 to Symn

g (Xi+1). Since this morphism was constructed in a

natural way for all index i, we get structural morphisms for Symn
`,T (X ).

Proposition 3.3.12. For each n ∈ N, the functor Symn
`,T ′ preserves levelwise A1-

weak equivalences between symmetric T ′-spectra whose slices are termwise coproduct of

representable sheaves, i.e. objects in ∆opC̄+.

Proof. Let f be a morphism of symmetric T ′-spectra. From the definition we have

an equality Evi(Symn
`,T ′(f)) = Symn

g (Evi(f)) for every i ∈ N. Hence the proposition

follows from Theorem 2.3.38.

Remark 3.3.13. The left Kan extension of the composite C+
Symn

−→ C+
Σ∞T−→ SptT (k)

along the functor Σ∞T is not a good candidate for a (geometric) symmetric power, as

this Kan extension is not isomorphic to the identity functor of SptT (k) when n = 1.
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Remark 3.3.14. For a symmetric T -spectrum, the canonical morphism ϑnX from the

categoric symmetric power Symn
T (X ) to geometric symmetric power Symn

g (X ) is not

always a stable A1-weak equivalence. For instance when X is represented by the affine

space A2, Corollary 3.3.8 implies that the canonical morphism from Symn
T (Σ∞T A2

+) to

Symn
g,T (Σ∞T A2

+) is not a stable A1-weak equivalence.

3.3.2 Künneth towers

Let f : X → Y be a morphism of symmetric spectra in SptT (k). A filtration of

Symn
g,T (f) of the form

Symn
g,T (X ) = L n

0 (f)→ L n
1 (f)→ · · · → L n

n (f) = Symn
g,T (Y )

is called (geometric) Künneth tower of Symn
g,T (f), if for each index 1 ≤ i ≤ n, there is

an isomorphism

cone
(
L n
i−1(f)→ L n

i−1(f)
)
' Symn−i

g,T (X ) ∧ Symi
g,T (X ) .

in SHT (k).

Definition 3.3.15. A symmetric T -spectrum is called representable, if it is isomorphic

to a T -spectrum of the form H(U), where U is an object on SptP1
+

(∆opC+). A sym-

metric T ′-spectrum is called representable, if it is isomorphic to a T ′-spectrum of the

form H ′(U), where U is an object on SptP1
+

(∆opC+).

Definition 3.3.16. Denote by SptP1
+

(∆opC+)# the full subcategory of SptT ′(k) gen-

erated by directed colimits of representable spectra.

Definition 3.3.17. Let D be a symmetric monoidal model category and let S be an

object of D . Let K : 2 → C be a functor, where 2 is the category with two objects

and one nontrivial morphism. Let φS : Dn → C 2n−1 the functor that sends an n-tuple

(X1, . . . , Xn) to a (2n − 1)-tuple (X1, S,X2, S, . . . , Xn−1, S,Xn). For any morphism

f : X → Y in C and any integer n ≥ 1, let Kn
S(f) be the composite

2n → C n ψS−→ C 2n−1 ∧→ C .

For each index 0 ≤ i ≤ n, we denote by Kn
S,i(f) the restriction of Kn

S(f) to 2ni , see 126.

We denote

2n
S,i(f) :=colimKn

S,i(f) ,

if this colimit exists. Since the symmetric group Σn acts on 2ni , one deduces that Σn

acts on 2S,i(f). We denote

2̃n
S,i(f) :=2n

S,i(f)/Σn ,

if this quotient exists.
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Lemma 3.3.18. Let D be a symmetric monoidal model category, let S be a monoid

and let f : X → Y be a morphism of S-modules. Suppose that for 0 ≤ i ≤ n, the objects

2S,i(f) and 2i(f) exist. Then, there are n canonical morphisms

2n
S,i(f)

//

//

//

//

//
//· · · · · · 2n

i (f) ,

for 0 ≤ i ≤ n, induced by the actions of S-modules. Moreover, if D allows quotients by

finite groups, then they induce n canonical morphisms

2̃n
S,i(f)

//

//

//

//

//
//· · · · · · 2̃n

i (f) .

Proof. These morphisms are constructed from the actions of S-modules.

Definition 3.3.19. A morphism ϕ of P1
+-spectra is called level-termwise coprojection

if for every n ∈ N, its nth slice ϕn is a termwise coprojection in ∆opC+. Similarly,

a morphism f of T -spectra (or T ′-spectra) is called level-termwise coprojection if for

every n ∈ N, its nth slice fn is a termwise coprojection in ∆opS∗.

Proposition 3.3.20. For every n ∈ N, the nth fold geometric symmetric symmetric

power of a morphism of representable T ′-spectra (resp. T -spectra), induced by a level-

termwise coprojection in SptP1
+

(∆opC+), has a canonical Künneth tower.

Proof. Let ϕ : U → V be a level-termwise coprojection in SptP1
+

(∆opC+). Let us write

Kn
P1,i(ϕ) instead of Kn

sym(P1
+),i

(ϕ). Since ϕ : U → V is a level-termwise coprojection the

colimit 2n
P1,i(ϕ) of Kn

P1,i(ϕ) exist in (∆opC+)Σ for every 0 ≤ i ≤ n. Moreover, since C

is admissible, the objects 2̃n
P1,i(ϕ) exists in (∆opC+)Σ. For similar reason, the objects

2̃n
i (ϕ) also exist. By Lemma 3.3.18, we have n canonical morphisms

2̃n
S,i(ϕ)

//

//

//

//

//
//· · · · · · 2̃n

i (ϕ) ,

induced by the action of sym(P1
+)-modules. These morphism induce a diagram

2̃n
P1,0(ϕ)

���� ���� ����

// 2̃n
P1,1(ϕ)

���� ���� ����

// · · · // 2̃n
P1,n−1(ϕ)

���� ���� ����

// 2̃n
P1,n(ϕ)

���� ���� ����
2̃n

0 (ϕ) // 2̃n
1 (ϕ) // · · · // 2̃n

n−1(ϕ) // 2̃n
n(ϕ)

Notice that

2̃n
i (ϕ)/2̃n

i−1(ϕ) ' U⊗(n−i)/Σn−i ⊗ (V/U)⊗i/Σi ,

and 2̃n
P1,i(ϕ)/2̃n

P1,i−1(ϕ) is isomorphic to the product of(
U ⊗ sym(P1

+)⊗ U ⊗ · · · ⊗ sym(P1
+)⊗ U

)/
Σn−i
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with

(
U/V ⊗ sym(P1

+)⊗ U/V ⊗ · · · ⊗ sym(P1
+)⊗ U/V

)/
Σi for every 0 ≤ i ≤ n. Hence,

we get a diagram

H ′(2̃n
P1,0(ϕ))

���� ���� ����

// H ′(2̃n
P1,1(ϕ))

���� ���� ����

// · · · // H ′(2̃n
P1,n−1(ϕ))

���� ���� ����

// H ′(2̃n
P1,n(ϕ))

���� ���� ����
H ′(2̃n

0 (ϕ)) // H ′(2̃n
1 (ϕ)) // · · · // 2̃n

n−1(ϕ) // H ′(2̃n
n(ϕ))

Taking colimit, the above diagram induces a sequence

L n
0 → L n

1 → · · · → L n
n .

By definition of geometric symmetric powers, we deduce that L n
0 = Symn

g,T ′(H
′(U))

and L n
n = Symn

g,T ′(H
′(V )). Moreover, from the above one has

L n
i /L

n
i−1 ' Symn

g,T ′(H
′(V )) ∧ Symn

g,T ′

(
H ′(V )/H ′(U)

)
.

Thus, the above sequence is a Künneth tower of the morphism Symn
g,T ′(H

′(ϕ)).

3.4 Special symmetric powers

Let k be a field, and suppose that A and B are two k-algebras. We shall denote by

Homk(A,B) the set of morphisms of k-algebras, that is, the set of ring homomorphisms

f : A→ B such that there is a commutative diagram

A
f // B

kO/

__?????????????? /�

??��������������

Notice that for any k-algebra B, the set Homk(k,B) consists of one single element, in

other words, k is the initial object in the category of k-algebras. In this section, h will

be understood as the Yoneda embedding of Sch/k into Pre(Sch/k). Sometimes, we

shall write Homk(−,−) instead of HomSch/k(−,−). If X is a k-scheme, then Symn
g (hX)

is the representable functor hSymnX for n ∈ N.

3.4.1 Symmetric powers of a point: Galois extensions

Let L/k be a finite Galois field extension and set X = Spec(L). Let K be an alge-

braically closed field containing L and let U = Spec(K). In the following paragraphs,

we shall prove that for any n ∈ N, the canonical morphism of sets

ϑnX(U) : (SymnhX)(U)→ (Symn
ghX)(U) .

is an isomorphism (see Proposition 3.4.4).
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Lemma 3.4.1. Let L/k be a finite Galois extension of degree r ≥ 1 and let n be an

integer n ≥ 1. The k-algebra (L⊗kn)Σn has dimension
(
r+n−1
n

)
as k-vector space.

Proof. Since L is a Galois extension over k of degree r, the tensor product L⊗kn is

isomorphic to L×r
n−1

as vector spaces over k. Let {v1, v2, . . . , vr} be a k-basis of L.

Then the family {vi1 ⊗ vi2 ⊗ . . .⊗ vin}0≤i1,i2,...,in≤r is a k-basis of L⊗kn. An element of

(L⊗kn)Σn is a linear combination∑
0≤i1,...,in≤r

ai1,...,in · vi1 ⊗ . . .⊗ vin ,

such that ∑
0≤i1,...,in≤r

ai1,...,in .viσ(1)
⊗ . . .⊗ viσ(n)

=
∑

0≤i1,...,in≤r
ai1,...,in .vi1 ⊗ . . .⊗ vin ,

for all σ ∈ Σn. From the above equality, we deduce the following relations

ai1,...,in = aiσ(1),...,iσ(n)
, (3.29)

for all σ ∈ Σn and for all indices i1, . . . , in. We recall that a combination of {1, 2, . . . , r}
choosing n elements is an unordered n-tuple {i1, . . . , in} allowing repetition of the

elements i1, . . . , in in {1, 2, . . . , r}. Let us denote by C(r, n) the set of all repetitions of

{1, 2, . . . , r} choosing n elements, and fix I = {i1, . . . , in} in C(r, n). Suppose I has p

different elements j1, . . . , jp, where 1 ≤ p ≤ n, such that each there are kl repetitions

of the element jl in I for 1 ≤ l ≤ p. In particular, one has
∑l

j=1 kl = n. Let us denote

by P (I) = P (i1, . . . , in) the set of permutations with repetitions of {i1, . . . , in}. By

an elementary computation in combinatorics, P (I) has a cardinality equal to n!
k1!.··· .kp!

elements. Then we have∑
{i′1,...,i′n}∈P (i1,...,in)

vi′1 ⊗ . . .⊗ vi′n =
k1!. · · · .kp!

n!
·
∑
σ∈Σn

vσ(i1) ⊗ . . .⊗ vσ(in) .

and, from (3.29), we deduce that ai′1,...,i′n = ai1,...,in for all {i′1, . . . , i′n} ∈ P (i1, . . . , in).

Hence∑
0≤i1,...,in≤r

ai1,...,in .vi1⊗. . .⊗vin =
∑

{i1,...,in}∈C(r,n)

∑
{i′1,...,i′n}∈P (i1,...,in)

ai1,...,in ·vi′1⊗. . .⊗vi′n .

Observe that the set ∑
{i′1,...,i′n}∈P (i1,...,in)

vi′1 ⊗ . . .⊗ vi′n


{i1,...,in}∈C(r,n)

is formed by linearly independent vectors in the k-vector space L⊗kn. Hence, it is a

basis of (L⊗kn)Σn . Then the dimension of (L⊗kn)Σn is determined by the cardinality

of C(r, n), thus (L⊗kn)Σn has dimension |C(r, n)| =
(
r+n−1
n

)
.
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Example 3.4.2. In the previous lemma, if L/k is a cubic extension, i.e. r = 3 with a

k-basis {v1, v2, v3} and n = 2, then the k-algebra (L⊗L)Σ2 has dimension 6 as k-vector

space and its canonical basis consists of six vectors

v1 ⊗ v1 ,

v2 ⊗ v2 ,

v3 ⊗ v3 ,

v1 ⊗ v2 + v2 ⊗ v1 ,

v1 ⊗ v3 + v3 ⊗ v1 ,

v2 ⊗ v3 + v3 ⊗ v2 .

Lemma 3.4.3. Let L/k be a finite Galois extension of degree r ≥ 1 and set X =

Spec(L). Let K be an algebraically closed field containing L and let U = Spec(K).

Then, for any integer n ≥ 1 the set hSymnX(U) is a finite set with
(
r+n−1
n

)
elements.

Proof. Since (L⊗kn)Σn is a sub-algebra of L⊗kn ' L×r
n−1

, the k-algebra (L⊗kn)Σn is

isomorphic to a product
∏rn−1

j=1 Lj , where each Lj is a field extension of k contained in

L. By the previous lemma, we have that the sum
∑rn−1

j=1 dimk Lj is equal to
(
r+n−1
n

)
.

Let K be an algebraically closed field containing L. One has,

Homk

(
(L⊗kn)Σn ,K

)
= Homk

 ∏
1≤j≤rn−1

Lj ,K


'

∐
1≤j≤rn−1

Homk(Lj ,K) .

Since Lj/k is a finite separable extension and K is algebraically closed, Homk(Lj ,K)

is a finite set with cardinality equal to dimk Lj for all j = 1, . . . , rn−1. Hence, the set

Homk

(
(L⊗kn)Σn ,K

)
is finite and has a cardinality equal to

∑rn−1

j=1 dimk Lj =
(
r+n−1
n

)
.

Let U = Spec(K). We have,

hSymnX(U) = Homk(U,SymnX)

= HomSpec(k)

(
Spec(K),Spec

(
(L⊗kn)Σn

))
= Homk

(
(L⊗kn)Σn ,K

)
.

Thus, we conclude that hSymnX(U) is a finite set with
(
r+n−1
n

)
elements.

Proposition 3.4.4. Let L/k be a finite Galois extension and set X = Spec(L). Let

K be an algebraically closed field containing L and let U = Spec(K). Then, for any

integer n ≥ 0, the canonical morphism of sets

ϑnX(U) : (SymnhX)(U)→ (Symn
ghX)(U)

is an isomorphism.
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Proof. It is trivial if n = 0, assume that n ≥ 1. Suppose that L = k(α) where α is a

root of an irreducible polynomial P (t) of degree r ≥ 1. Notice that (SymnhX)(U) =

Homk(L,K)n/Σn is a finite set with
(
r+n−1
n

)
elements. On the other hand, by Lemma

3.4.3, (SymnhX)(U) is also a finite set with
(
r+n−1
n

)
elements, then it is enough to

prove the injectivity of the canonical morphism of sets from Homk(L,K)n/Σn to

Homk

(
(L⊗kn)Σn ,K

)
, defined by {f1, . . . , fn} 7→ (f1 ⊗ · · · ⊗ fn)|(L⊗kn)Σn . Indeed, let

{f1, . . . , fn} and {f ′1, . . . , f ′n} be two unordered n-tuple in Homk(L,K)n/Σn such that

(f1 ⊗ · · · ⊗ fn)|(L⊗kn)Σn = (f ′1 ⊗ · · · ⊗ f ′n)|(L⊗kn)Σn . (3.30)

We put α1 = f1(α), . . . , αn = fn(α) and α′1 = f ′1(α), . . . , α′r = f ′n(α). Then {α1, . . . , αn}
and {α′1, . . . , α′n} are two unordered n-tuples formed by roots of P (t) non necessarily

distinct from each other. Notice that to prove that the set {f1, . . . , fn} is equal to

{f ′1, . . . , f ′n}, it will be enough to prove that the set {α1, . . . , αn} is equal to {α′1, . . . , α′n},
as a homomorphism of k-algebras L → K is uniquely determined by a root of P (t).

Indeed, observe that the elements

n∑
i=1

1⊗ · · · ⊗ 1⊗ α︸︷︷︸
ith position

⊗1⊗ · · · ⊗ 1

 ,

n∑
1≤i<j≤n

1⊗ · · · ⊗ 1⊗ α︸︷︷︸
ith position

⊗1⊗ · · · ⊗ 1⊗ α︸︷︷︸
jth position

⊗1⊗ · · · ⊗ 1

 ,

· · · · · ·

· · · · · ·

α⊗ α⊗ · · · ⊗ α ,

lie in (L⊗n)Σn . In view of the equality (f1 ⊗ · · · ⊗ fn)(a1 ⊗ · · · ⊗ an) = a1 · · · · · an for

all elements a1, . . . , an in L, we deduce the following equalities,

n∑
i=1

αi = (f1 ⊗ · · · ⊗ fn)

(
n∑
i=1

1⊗ · · · ⊗ α⊗ · · · ⊗ 1

)
,

n∑
1≤i<j≤n

αi · αj = (f1 ⊗ · · · ⊗ fn)

 n∑
1≤i<j≤n

1⊗ · · · ⊗ α⊗ · · · ⊗ α⊗ · · · ⊗ 1

 ,

· · · · · ·

· · · · · ·

α1 · α2 · · · · · αn = (f1 ⊗ · · · ⊗ fn)(α⊗ α⊗ · · · ⊗ α) .

Using (3.30), these equalities allow us to deduce the following,
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n∑
i=1

αi =
n∑
i=1

α′i ,

n∑
1≤i<j≤n

αi · αj =
n∑

1≤i<j≤n
α′i · α′j ,

· · · · · ·

· · · · · ·

α1 · α2 · · · · · αn = α′1 · α′2 · · · · · α′n .

Notice also that these elements are in k, because they are invariants under Gal(L/k).

Now, observe that α1, . . . , αn are all the solutions of the polynomial

P (t) :=tn −

(
n∑
i=1

αi

)
· tn−1 +

 n∑
1≤i<j≤n

αi · αj

 · tn−2 + · · ·+ (−1)n · α1 · · · · · αn

in k[t], whereas α′1, . . . , α
′
n are all the solutions of the polynomial

P ′(t) :=tn −

(
n∑
i=1

α′i

)
· tn−1 +

 n∑
1≤i<j≤n

α′i · α′j

 · tn−2 + · · ·+ (−1)n · α′1 · · · · · α′n

which is also in k[t]. Since P (t) = P ′(t), we conclude that {α1, . . . , αn} = {α′1, . . . , α′n},
as required.

3.4.2 Symmetric powers of a double point

Here, we shall study the square symmetric power of X = Spec
(
k[x]/(x2)

)
. Our goal in

the next paragraphs is Proposition 3.4.6.

Notice that there is a natural isomorphism of k-algebras k[x]⊗kk[x] ' k[x, y] defined

by x ⊗ 1 7→ x and 1 ⊗ x 7→ y. The universal property of tensor product provides an

isomorphism of k-algebras,(
k[x]/(x2)

)
⊗k
(
k[x]/(x2)

)
' k[x, y]/(x2, y2) .

Let τ be the transposition of Σ2. The symmetric group Σ2 acts on k[x] ⊗k k[x] by

τ(x ⊗ 1) = 1 ⊗ x and τ(1 ⊗ x) = x ⊗ 1. Then τ acts on k[x, y] by setting τ(x) =

y and τ(y) = x. Thus we have an isomorphism of k-algebras τ : k[x, y] → k[x, y].

Since τ
(
(x2, y2)

)
= (x2, y2), the permutation τ induces an isomorphism of k-algebras

τ : k[x, y]/(x2, y2)→ k[x, y]/(x2, y2) such that the following diagram

k[x, y]
τ //

��

k[x, y]

��
k[x, y]/(x2, y2) τ

// k[x, y]/(x2, y2)

164



is commutative, where the vertical diagrams are the canonical homomorphisms. From

the above diagram, Σ2 acts on k[x, y]/(x2, y2) by τ(x) = y and τ(y) = x. On the other

hand, we know that there is an isomorphism of k-algebras k[x, y]Σ2 ' k[u, v], where

u = x+ y and v = xy.

Lemma 3.4.5. There is an isomorphism of k-algebras,(
k[x, y]

(x2, y2)

)Σ2

' k[u, v]/(u2 − 2v, v2, uv) ,

such that we have a commutative diagram

k[x, y]Σ2 //

��

k[u, v]

��(
k[x,y]

(x2,y2)

)Σ2
// k[u,v]
(u2−2v,v2,uv)

Proof. Indeed, every element of k[x, y]/(x2, y2) has the form

f(x, y) = a+ b · x+ c · y + d · x · y ,

where a, b, c and d are elements of k. Now, if f(x, y) ∈
(
k[x,y]

(x2,y2)

)Σ2

then we have

τ(f(x, y)) = f(x, y). Hence,

a+ b · y + c · x+ d · y · x = a+ b · x+ c · y + d · x · y ,

then b = c. Thus, any element of
(
k[x,y]

(x2,y2)

)Σ2

can uniquely be written as

f(x, y) = a+ b · (x+ y) + d · x · y ,

where a, b and d are elements of k. Since u = x+ y, v = xy, we have

(x2, y2) ∩ k[x, y]Σ2 = (u2 − 2v, v2, uv) .

In fact, to prove this equality, one uses the following relations u2 − 2v = x2 + y2,

v2 = x2y2 and uv = x2y + xy2. Any element of
(
k[x,y]

(x2,y2)

)Σ2

can uniquely be written as

f(x, y) = a+ b · u+ d · v ,

but the right-hand side is an element of k[u,v]
(u2−2v,v2,uv)

. Reciprocally, any element of
k[u,v]

(u2−2v,v2,uv)
can uniquely be written as a+ b · u+ d · v with a, b, d ∈ k. This show that

the isomorphism k[x, y]Σ2 ' k[u, v] induces an isomorphism
(
k[x,y]

(x2,y2)

)Σ2

' k[u,v]
(u2−2v,v2,uv)

such that the above diagram is commutative. Therefore,(
k[x]

(x2)
⊗k

k[x]

(x2)

)Σ2

'
(
k[x, y]

(x2, y2)

)Σ2

' k[u, v]/(u2 − 2v, v2, uv) .
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Proposition 3.4.6. Let X = Spec(k[x]/(x2)) and let U = Spec(A), where A is a

k-algebra. Then the canonical morphism of sets

ϑ2
X(U) : (Sym2hX)(U)→ (Sym2

ghX)(U)

is injective. Moreover, if A is a reduced algebra, then ϑ2
X(U) is bijective.

Proof. We have

hX = Homk(U,X) ' Homk(k[x]/(x2), A) ' {a ∈ A|a2 = 0} ,

and

hSym2(X)(U) = Homk

(
U,Sym2(X)

)
' Homk

(
Spec(A),Spec

(
k[u, v]

(u2 − 2v, v2, uv)

))
= Homk

(
k[u, v]

(u2 − 2v, v2, uv)
, A

)
'
{

(c, d) ∈ A2|c2 − 2d = d2 = c · d = 0
}
.

Moreover, we have a commutative diagram(
Sym2hX

)
(U) //

��

hSym2(X)(U)

��{
a ∈ A|a2 = 0

}×2
/Σ2

ξ
//
{

(c, d) ∈ A2|c2 − 2d = d2 = c · d = 0
}

where the vertical arrows are bijections and the morphism of sets

ξ :
{
a ∈ A|a2 = 0

}×2
/Σ2 −→

{
(c, d) ∈ A2|c2 − 2d = d2 = c · d = 0

}
is defined by

{a, b} 7→ (a+ b, a · b)

By the Vieta’s formulae, two elements a and b in A are roots of the quadratic polynomial

t2 − (a+ b) · t+ a · b = 0

in A[t]. Then we deduce that ξ is injective. Now, if A is a reduced algebra, then ξ is a

map of sets with one element. Therefore, ϑ2
X(U) is bijective.
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3.4.3 Symmetric powers of the affine line

I learnt the following proposition from V. Guletskĭı, though he attributes this result to

S. Gorchinskiy.

Proposition 3.4.7. Let K be a field extension over a ground field k, and put X =

Spec(A1) and U = Spec(K). Fix an integer n ≥ 2. Then the canonical morphism of

sets

ϑnX(U) : (SymnhX)(U)→ (Symn
ghX)(U)

is injective and has cofiber H1
ét(U,Σn).

Proof. If k[x1, x2, · · · , xn] is the ring of polynomial with n-variables, then we have an

isomorphism of k-algebras k[x1, x2, · · · , xn]Σn ' k[u1, u2, · · · , un], where

u1 =

n∑
i=1

xi ,

u2 =

n∑
1≤i<j≤n

xi · xj ,

· · ·

un = x1 · · ·xn .

Hence, we have

Symn(A1) = Spec(k[x1, x2, · · · , xn]Σn) ' Spec(k[u1, u2, · · · , un]) ' An .

Then,

hSymn(A1)(U) ' hAn(U) ' Kn .

We have a commutative diagram

(SymnhX) (U) //

��

hSymn(X)(U)

��
Kn/Σn

// Kn

where the vertical arrows are bijections and Kn/Σn → Kn is the morphism of sets

which sends an unordered n-tuple {a1, . . . , an} to the ordered n-tuple n∑
i=1

ai,

n∑
1≤i<j≤n

ai · aj , . . . , a1 · · · an

 .

For any element (c1, . . . , cn) of Kn, we denote the monic polynomial in K[t]

Pc1,...,cn(t) :=tn − c1 · tn−1 + c2 · tn−2 + · · ·+ cn .
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Observe that, by the Vieta’s formulae, any unordered n-tuple {a1, . . . , an} of elements

of K is a set of solutions of the polynomial

tn −

(
n∑
i=1

ai

)
· tn−1 +

 n∑
1≤i<j≤n

ai · aj

 · tn−2 + · · ·+ (−1)n · a1 · · · an .

We claim that Kn/Σn → Kn is injective. In fact, if {a1, . . . , an} and {b1, . . . , bn} are

two unordered n-tuples such that n∑
i=1

ai,
n∑

1≤i<j≤n
ai · aj , . . . , a1 · · · an

 =

 n∑
i=1

bi,
n∑

1≤i<j≤n
bi · bj , . . . , b1 · · · bn

 .

Then, {a1, . . . , an} and {b1, . . . , bn} are both the set of solutions of the equation

Pc1,...,cn(t) = 0 ,

therefore, we have {a1, . . . , an} = {b1, . . . , bn}, showing the injectivity of the above

morphism of sets. We define a morphism of sets βn : Kn → H1
ét(U,Σn) as follows.

If (c1, . . . , cn) ∈ Kn, we denote by E = Ec1,...,cn the splitting field of the polynomial

Pc1,...,cn(t) ∈ K[t]. Then Gal(E/K) ⊂ Σn. We define βn(c1, . . . , cn) to be the composite

Gal(K/K)→ Gal(E/K) ↪→ Σn .

Next, we shall prove that the following diagram of sets

Kn/Σn
//

��

Kn

βn

��
pt // H1

ét(U,Σn)

is a pushout, in other words, we a bijection of sets

Kn/(Kn/Σn) ' H1
ét(U,Σn)

induced by βn. To see this bijection it is enough to prove that if f0 : Gal(K/K)→ Σn

is the trivial homomorphism we have

β−1
n (f0) = Kn/Σn .

In fact, if (c1, . . . , cn) is in Kn/Σn if and only if the solutions of the polynomial

Pc1,...,cn(t) are all in K, if and only if the splitting field E = Ec1,...,cn of Pc1,...,cn(t)

is equal to K, if and only if the composite

Gal(K/K)→ Gal(E/K) ↪→ Σn

is the trivial homomorphism f0, that is, βn(c1, . . . , cn) = f0.
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3.4.4 Symmetric powers of the affine 2-dimensional space

Proposition 3.4.8. We have an isomorphism

Sym2(A2) ' A2 ×Q

where Q is the quadratic cone {uw − v2 = 0} over a field k.

Proof. Let x1, y1, x2, y2 be the coordinates of A2 with coefficients over a field k, that is,

A2 = Spec(k[x1, y1, x2, y2]). We set x :=x1 − x2, y :=y1 − y2, x′ :=x1 + x2, y′ :=y1 + y2.

We have

Sym2(A2) ' Spec
(
k[x1, y1, x2, y2]Σ2

)
,

and

A2 ×Q ' Spec(k[x′, y′])×k Spec

(
k[u, v, w]

(uw − v2)

)
' Spec

(
k[x′, y′]⊗k

k[u, v, w]

(uw − v2)

)
.

Let τ the transposition of Σ2. Notice that τ(x) = −x, τ(y) = −y, τ(x′) = x′ and

τ(y′) = y′. The transposition τ induces a morphism of k-algebras τ : k[x, y] → k[x, y].

Then, we have

k[x′, y′, x, y]Σ2 = (k[x, y]Σ2)[x′, y′] .

Hence, all we need is to show the following isomorphism

k[x, y]Σ2 ' k[u, v, w]/(uw − v2) .

We define a morphism of k-algebras ϕ : k[u, v, w] → k[x, y]Σ2 given by ϕ(u) = x2,

ϕ(v) = xy and ϕ(w) = y2. Notice that τ(x2) = (−x)2 = x2, similarly τ(xy) = xy and

τ(y2) = y2, then ϕ is well defined. We shall show now that ker(ϕ) =
〈
uw − v2

〉
. Note

that the inclusion
〈
uw − v2

〉
⊂ ker(ϕ) is immediate to see. To show that the other

inclusion, notice that set {x2, xy, y2} is algebraically dependent over k and if f(u, v, w)

is a polynomial in k[u, v, w] of minimal absolute degree such that f(x2, xy, y2) = 0,

then f(u, v, w) is equal to uw − v2 up to a multiplication by an element in k×. This

shows the required inclusion.

Claim 3.4.9. Let X = A2 the affine plane over a field k and let A be a k-algebra.

Then the canonical morphism of sets

ϑnX(U) : (SymnhX)(U)→ (Symn
ghX)(U)

is not always surjective for n > 1.

Proof. Let us consider n = 2. We have

hX(U) = Homk(U,X) ' Homk(k[x, y], A) ' A2 .
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In view of the previous proposition, we have

hSym2(X)(U) = Homk(U,A2 ×Q)

' Homk(Spec(A), Spec(k[x, y, u, v, w]/(uw − v2))

= Homk(k[x, y, u, v, w]/(uw − v2), A)

' A2 ×Q(A) ,

where Q(A) is the set of elements (a, b, c) ∈ A3 such that ac = b2. The morphism of

sets A2/Σ2 → A2 ×Q(A) sends a unordered pair {(x1, y1), (x2, y2)} to the 5-tuple(
x1 + x2, y1 + y2, (x1 − x2)2, (x1 − x2) · (y1 − y2), (y1 − y2)2

)
.

Notice that this application is well-defined. Now, take for example k = Q and A = Q.

The morphism of sets ψ : A2/Σ2 → A2×Q(A) is not surjective, for instance the element

(0, 0, 2, 1, 1/2) ∈ A2 ×Q(A) does not lie in the image of ψ because 2 is not a square in

Q.
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Chapter 4

Lambda-structures in motivic
categories

In algebraic geometry, the theory of λ-structures on rings has allowed to develop system-

atically a formalism of the Riemann-Roch algebra on Grothendieck groups of algebraic

varieties, [10]. Let R be a commutative ring with unit 1. A λ-structure on R is a

sequence

{Λn : R→ R}n∈N

of endomorphisms of R such that one has the following axioms:

(i) Λ0(a) = 1, Λ1(a) = a, for every a ∈ R,

(ii) Λn(a+ b) =
∑

i+j=n Λi(a) · Λj(b), for every a, b ∈ R.

See loc.cit. Let us give an illustrate example. Let X be an algebraic variety and let

us denote by VX the category of locally free sheaves on X. The Grothendieck group

K(X) of X is the free Abelian group Z[VX ], generated by classes of isomorphisms of

objects in VX , modulo the following relations

[F ]− [E ]− [G ] ,

whenever one has an exact sequence

0→ E → F → G → 0 . (4.1)

The tensor product ⊗ on VX induces a multiplication on K(X) by setting

[E ]⊗ [F ] :=[E ⊗F ] ,

for objects E and F in VX . The unit of K(X) is [OX ], where OX is the structural

sheaf of X. By definition, the exact sequence

0→ E → E ⊕F → F → 0
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gives an equality [E ⊕F ] = [E ] + [F ]. The nth fold symmetric power Symn of sheaves

in VX induces an endomorphism Symn of K(X). It turns out that the sequence{
Symn : K(X)→ K(X)

}
n∈N

is a λ-structure on K(X). Indeed, we have Sym0E ' OX and Sym1E ' E for all

E in VX . Suppose we have an exact sequence (4.1) and fix an positive integer n.

For each index 0 ≤ i ≤ n, let us write Lni for the image of the canonical morphism

Symn−iE ⊗ SymiF → SymnF . Then the induced morphism SymnE → SymnF has a

filtration

SymnE = Ln0 ⊂ Ln1 ⊂ · · · ⊂ Lnn = SymnF ,

such that there is an isomorphism

Lni /L
n
i−1 ' Symn−iE ⊗ SymiG ,

for 1 ≤ i ≤ n. The important point is that we have a filtration in the category VX , i.e.

a filtration before taking isomorphism classes. This suggests the possibility of study a

global or categoric theory of λ-structures on categories with short sequences, or more

generally on categories with cofibre sequences studied in homotopical algebra. The

idea of λ-structure on symmetric monoidal model categories was introduced in [13]. It

allows one to study systematically various sorts of symmetric powers in such model

categories and in their homotopy categories.

Lambda-structures

Let us give a precise definition of a λ-structure.

Definition 4.0.10. Let C be a closed symmetric monoidal model category with unit

1. A λ-structure on C is a sequence Λ∗ = (Λ0,Λ1,Λ2, . . . ) consisting of endofunctors

Λn : C → C for n ∈ N, satisfying the following:

(i) Λ0 = 1, Λ1 = id,

(ii) (Künneth towers). For any special cofibre sequence X
f→ Y → Z in C , and any

n ∈ N, there is a unique sequence of cofibrations between cofibrant objects

Λn(X) = Ln0 → Ln1 → · · · → Lni → · · · → Lnn = Λn(Y ) ,

called Künneth tower, such that for any index 0 ≤ i ≤ n, there is an isomorphism

Lni /L
n
i−1 ' Λn−i(X) ∧ Λi(Z) .
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(iii) (Functoriality). For any commutative diagram

X //

��

Y //

��

Z

��
X ′ // Y ′ // Z ′

(4.2)

in which the horizontal lines are special cofibre sequences, there is a commutative

diagram

Λn(X) = Ln0
//

��

Ln1
//

��

Ln2
//

��

· · · · · · // Lnn−1
//

��

//

��

Lnn = Λn(Y )

��
Λn(X ′) = L′n0 // L′n1 //// L′n2 // · · · · · · // L′nn−1

//// L′nn = Λn(Y ′)

(4.3)

in C .

Example 4.0.11. Let C be a closed symmetric monoidal model category such that

cofibrations in C are symmetrizable (see Definition 3.1.22). Then Theorem 3.1.26

implies that the categoric symmetric powers Symn : C → C , for n ∈ N, define a λ-

structure on C .

Similarly, we give the definition of λ-structure on the homotopy category of a sym-

metric monoidal model category.

Definition 4.0.12. Let C be a closed symmetric monoidal model category. A λ-

structure on Ho (C ) is a sequence Λ∗ = (Λ0,Λ1,Λ2, . . . ) consisting of endofunctors Λn

of Ho (C ) for n ∈ N, satisfying the following axioms:

(i) Λ0 = 1, Λ1 = id,

(ii) (Künneth tower axiom). For any cofibre sequence X
f→ Y → Z in Ho (C ), and

any n ∈ N, there is a unique sequence

Λn(X) = Ln0 → Ln1 → · · · → Lni → · · · → Lnn = Λn(Y ) .

called Künneth tower, such that for any index 0 ≤ i ≤ n, the quotient Lni /L
n
i−1

in C is weak equivalent to the product Λn−i(X) ∧ Λi(Z).

(iii) (Functoriality axiom). For any morphism of cofibre sequences in Ho (C ) of the

(4.2), there is a commutative diagram of the form (4.3) in Ho (C ), in which the

horizontal sequences are the respective Künneth towers.
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Example 4.0.13. Let Symn be the categoric nth fold symmetric power defined on

∆opS∗, for n ∈ N. The left derived functors LSymn, for n ∈ N, provide a λ-structure

on H∗(CNis,A1) (see [13, Theorem 57] for the proof in the context Nisnevich sheaves

on the category of smooth schemes). Indeed, the morphism ∆A1 [0] → ∆Spec(k)[0] is a

diagonalizable interval, meaning that ∆A1 [0] has a structure of symmetric co-algebra

in the category ∆opS . We claim that the class of cofibrations and the class of trivial

cofibrations in ∆opS are symmetrizable. Since cofibrations in ∆opS are section-wise

cofibrations of simplicial sets, it follows from Proposition 55 of [13] that cofibrations

are symmetrizable. Let f be a trivial cofibration in ∆opS . As f is a cofibration, it is

a symmetrizable cofibration. For every point P of the site CNis, the induced morphism

fP is a weak equivalence of simplicial sets. By [13, Lemma 54], the nth fold symmetric

power Symn(fP ) is also a weak equivalence. Since the morphism Symn(f)P coincide

with Symn(fP ), we deduce that the nth fold symmetric power Symn(f) is a weak

equivalence too. Hence, by [13, Corollary 54], f is a symmetrizable trivial cofibration.

Finally, Theorem 38 and Theorem 22 of [13] imply the existence of left derived functors

LSymn, for n ∈ N, and they provide a λ-structure on H∗(CNis,A1).

Example 4.0.14. Let D be a simplicial symmetric monoidal Q-linear stable model

category [6]. The projector symmetric powers Symn
pr of Definition 4.3.7, for all n ∈ N,

induce a λ-structure on Ho (D), see Proposition 4.3.9.

Example 4.0.15. The endofunctors LSymn
g , for n ∈ N, provides a λ-structure on the

category H∗(CNis,A1), see Theorem 4.1.4.

Morphisms of lambda-structures

Next, we define a morphism between two λ-structures as a sequence of natural trans-

formations which are compatible with their Künneth towers.

Definition 4.0.16. Let C be a closed symmetric monoidal model category with unit

1 and let Λ∗ and Λ′∗ be two λ-structures on C . A morphism of λ-structures from Λ∗

to Λ′∗ consists of a sequence Φ∗ = (Φ0,Φ1,Φ2, . . . ) of natural transformations Φn from

Λn to Λ′n for n ∈ N, such that for any cofibre sequence X → Y → Z in C and any

n ∈ N, there a commutative diagram

Λn(X) = Ln0
//

Φn(X)

��

Ln1
//

��

Ln2
//

��

· · · · · · // Lnn−1
//

��

//

��

Lnn = Λn(Y )

Φn(Y )

��
Λ′n(X) = L′n0 // L′n1 //// L′n2 // · · · · · · // L′nn−1

//// L′nn = Λ′n(Y )

(4.4)
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Example 4.0.17. Let C be a closed symmetric monoidal model category. The nat-

ural transformations Symn
h → Symn, for n ∈ N, from the homotopy to the categoric

symmetric powers, define a morphism of λ-structures on C , c.f. [12].

Definition 4.0.18. Let C be a closed symmetric monoidal model category with unit

1 and let Λ∗ and Λ′∗ be two λ-structures on Ho (C ). A morphism of λ-structures from

Λ∗ to Λ′∗ consists of a sequence Φ∗ = (Φ0,Φ1,Φ2, . . . ) of natural transformations Φn

from Λn to Λ′n for n ∈ N, such that for any cofibre sequence X → Y → Z in Ho (C )

and any n ∈ N, there a commutative diagram of the form (4.4) in Ho (C ).

Example 4.0.19. The natural transformations ϑn : Symn → Symn
g , for n ∈ N, induce

a morphism of λ-structures from the left derived categoric symmetric powers to the left

derived geometric powers on H∗(CNis,A1), see Theorem 4.1.10.

Example 4.0.20. Suppose that, for every n ∈ N, the left derived functor of Symn
g,T

exists on SHT (k). Then, the natural transformations ϑn : Symn
T → Symn

g,T , for n ∈ N,

induce a morphism of λ-structures from the left derived categoric symmetric powers to

the left derived geometric powers on SHT (k), see Theorem 4.2.13.

4.1 Unstable set-up

Our goal in this section is to prove the main result, Theorem 4.1.4, which asserts that

the left derived geometric symmetric powers LSymn
g , for n ∈ N (see Corollary 2.3.40),

induce a λ-structure on the pointed motivic homotopy category H∗(CNis,A1).

Proposition 4.1.1. Let C be an admissible category. Every cofibre sequence in the

homotopy category H∗(CNis,A1) is isomorphic to a cofibre sequence of the form

A → B → B/A ,

where A → B is in I+
proj-cell and A is an I+

proj-cell complex. In particular, A → B is

a morphism in ∆opC̄+.

Proof. Let X → Y → Z be a cofibre sequence in H∗(CNis,A1), where f is a cofibra-

tion from X to Y in ∆opS∗, such that Z = Y /X . We write A :=Qproj(X ) and

consider the induced morphism A →X . By Corollary 2.3.20 and Remark 2.3.22, the

composition of A →X with f induces a commutative diagram

A
α(f) //

��

B

β(f)

��
X

f
// Y
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where β(f) is a sectionwise trivial fibration and α(f) is in I+
proj-cell. By [18, Prop.

6.2.5], the cofibre sequence A → B → B/A is isomorphic to the cofibre sequence

X
[f ]→ Y → Z in H∗(CNis,A1).

Proposition 4.1.2. Let f : X → Y be a morphism in I+
proj-cell, where X is an I+

proj-

cell complex. Then, for each n ∈ N, Symn
g (f) has a functorial Künneth tower.

Proof. By virtue of Lemma 3.2.27, the morphism f can be expressed as the colimit of a

directed diagram {fd}d∈D of termwise coprojections of representable simplicial sheaves.

Let us write fd : ∆oph+
Xd
→ ∆oph+

Yd
, where X and Y are simplicial objects on C for

every d ∈ D, . Hence, by Proposition 3.2.21, the nth fold geometric symmetric power

Symn
g (fd) has a Künneth tower

L n
0 (fd) // L n

1 (fd) // · · · // L n
n (fd) . (4.5)

For each index 0 ≤ i ≤ n, we define

L n
i (f) :=colim d∈DL n

i (fd) .

Thus, we get a sequence

L n
0 (f) −→ L n

1 (f) −→ · · · −→ L n
n (f) . (4.6)

Let us show that this gives a Künneth tower of Symn
g (f) that is functorial in f . Since

the sequence (4.5) is a Künneth tower of Symn
g (fd), we have an isomorphism

L n
i (fd)/L

n
i−1(fd) ' Symn−i

g (∆oph+
Xd

) ∧ Symi
g

(
∆oph+

Yd
/∆oph+

Xd

)
.

Hence, taking the colimit on the indices d ∈ D, we get an isomorphism

L n
i (f)/L n

i−1(f) ' Symn−i
g (X ) ∧ Symi

g(Y /X ) . (4.7)

Lemma 4.1.3. The endofunctor LSym0
g of H∗(CNis,A1) is the constant functor with

value 1, where 1 is the object ∆Spec(k)[0]+ in H∗(CNis,A1), and the endofunctor LSym1
g

is the identity functor on H∗(CNis,A1).

Proof. Since Sym0X = Spec(k)+ for every object X in C+, the endofunctor Sym0 of

C+ is constant with value Spec(k)+. By the lef Kan extension, we deduce that Sym0

extends to an endofunctor Sym0
g of ∆opS∗ given by X 7→ ∆Spec(k)[0]+. Hence, we

deduce that LSym0
g is the endofunctor of H∗(CNis,A1) given by X 7→ 1. On the other

hand, for every object X in C+, we have Sym1X = X. By the left Kan extension, we

deduce that the endofunctor Sym1
g of ∆opS∗ is the identity functor, then LSym0

g is the

identity functor on H∗(CNis,A1).
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Now, we are ready to state and prove our main theorem in this section.

Theorem 4.1.4. The endofunctors LSymn
g , for n ∈ N, provides a λ-structure on

H∗(CNis,A1).

Proof. By Lemma 4.1.3, LSym0
g is the constant functor with value 1, and LSym1

g is

the identity functor on H∗(CNis,A1). Let X → Y → Z be a cofibre sequence in

H∗(CNis,A1) induced by a cofibration f : X → Y in the injective model structure of

∆opS∗. By Proposition 4.1.1, we can assume that f is in I+
proj-cell and X is an I+

proj-cell

complex. Hence, by Proposition 4.1.2, for each index n ∈ N, Symn
g (f) has a Künneth

tower,

Symn
g (X ) = L n

0 (f)→ L n
1 (f)→ · · · → L n

n (f) = Symn
g (Y ) , (4.8)

which induces a Künneth tower,

LSymn
g (X ) = LL n

0 (f)→ LL n
1 (f)→ · · · → LL n

n (f) = LSymn
g (Y ) ,

of LSymn
g (f) in H∗(CNis,A1). Finally, the functoriality axiom follows from the func-

tionality of Künneth towers of the form (4.8), see Proposition 4.1.2.

4.1.1 A morphism of lambda-structures

In this section, we show the existence of a morphism of λ-structures from left derived

categoric symmetric powers to the left derived geometric symmetric powers, see Theo-

rem 4.1.10.

Let us consider the smash product ∧ on ∆opS∗. Let f : X → Y be a morphism

in ∆opS∗. We recall from Section 3.1.2 that one has a sequence of subdiagrams

Kn
0 (f) ⊂ Kn

1 (f) ⊂ · · · ⊂ Kn
n (f) .

This induces a sequence of morphisms in ∆opS∗,

X ∧n = 2n
0 (f)→ 2n

1 (f)→ · · · → 2n
n(f) = Y ∧n ,

and its composite is nothing but the n-fold smash product f∧n : X ∧n → Y ∧n of f .

For every 0 ≤ i ≤ n, we denote

Lni (f) = 2n
i (f)/Σn .

In particular, we have Ln0 = X ∧n/Σn = Symn(X ) and Lnn = Y ∧n/Σn = Symn(Y ).
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One has the following commutative diagram,

X ∧n = 2n
0 (f)

f∧n

,,
//

��

2n
1 (f) //

��

· · · // 2n
n−1(f) //

��

2n
n(f) = Y ∧n

��
SymnX = Ln0 (f) //

Symnf

22
Ln1 (f) // · · · // Lnn−1(f) // Lnn(f) = SymnY

A functorial morphism

For every simplicial sheaf X , we want to construct a natural morphism ϑnX from

Symn(X ) to Symn
g (X ) . First of all, let us consider the case when X is a representable

simplicial sheaf hX for X in C . In this case, Symn
g (hX) is nothing but hSymnX . In view

of the isomorphism (hX)×n ' hXn , the canonical morphism hXn → hSymn induces a

morphism (hX)×n/Σn → hSymn , that is, a morphism Symn(hX) → Symn
g (hX). We

denote this morphism by ϑnhX or simply by ϑnX .

Proposition 4.1.5. For every simplicial sheaf X , there is a functorial morphism

ϑnX : Symn(X )→ Symn
g (X ) .

Proof. It is enough to show for a sheaf X . Indeed, in view of Lemma 3.2.12, we have

an isomorphism X ×n ' colim hX→X hXn . Hence, one has

Symn(X ) = (X ×n)/Σn

' (colim hX→X hXn)/Σn

' colim hX→X (hXn/Σn)

= colim hX→X Symn(hX) .

Taking colimit to the canonical morphisms ϑnX : SymnhX → Symn
ghX , for X in C , we

get a morphism

colim hX→X ϑnX : colim hX→X SymnhX → colim hX→X Symn
ghX .

On the one hand, we have seen above that colim hX→X SymnhX is isomorphic to

Symn(X ), and on the other hand, colim hX→X Symn
ghX is by definition equal to Symn

gX .

Thus, we get a functorial morphism from Symn(X ) to Symn
g (X ) which we denote it

by ϑnX .

Corollary 4.1.6. For every pointed simplicial sheaf X , there is a functorial morphism

ϑnX : Symn(X )→ Symn
g (X ) .
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Proof. It follows from the previous Proposition 4.1.5.

For each n ∈ N, we denote by ϑn : Symn → Symn
g the natural transformation defined

for every pointed simplicial sheaf X to be the functorial morphism ϑn(X ) :=ϑnX of

Corollary 4.1.6.

Lemma 4.1.7. Let ϕ : X → Y be termwise coprojection in ∆opC+ and let us write

f :=∆oph+
ϕ . Then for every pair of numbers (n, i) ∈ N2 with 0 ≤ i ≤ n, there exists a

canonical morphism

ϑni (f) : Lni (f)→ L n
i (f) ,

such that one has a commutative diagram

Ln0 (f) //

ϑn0 (f)

��

Ln1 (f) //

ϑn1 (f)

��

· · · · · · // Lnn−1(f) //

��

//

ϑnn−1(f)

��

Lnn(f)

ϑnn(f)

��
L n

0 (f) // L n
1 (f) //// · · · · · · // L n

n−1(f) //// L n
n (f)

(4.9)

Proof. Let us fix a natural number n. For each index 0 ≤ i ≤ n, L n
i (f) is nothing

but the object ∆oph+
2̃ni (ϕ)

, see Proposition 3.2.21. Since the functor h+ : C+ → S∗ is

monoidal, 2n
i (f) is canonically isomorphic to ∆oph+

2ni (ϕ). Thus, we have a canonical

morphism 2n
i (f)→ L n

i (f), and this morphism induces a morphism

ϑni (f) : Lni (f)→ L n
i (f) .

Since ϑni (f) is constructed canonically, we get a commutative diagram (4.9).

Example 4.1.8. Let us consider a coprojection X → X ∨ Y in ∆opC+ and let f be

the morphism ∆oph+
ϕ . We have a commutative diagram

∆oph+
X ∧∆oph+

X
//

��

(
∆oph+

X ∨∆oph+
Y

)
∧∆oph+

X

��

∆oph+
X ∧

(
∆oph+

X ∨∆oph+
Y

)
//
(

∆oph+
X ∨∆oph+

Y

)
∧
(

∆oph+
X ∨∆oph+

Y

)
(4.10)

which is induced by a diagram

X ∧X //

��

(X ∨ Y ) ∧X

��
X ∧ (X ∨ Y ) // (X ∨ Y ) ∧ (X ∨ Y )
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Then, one gets canonical morphisms

ϑ2
0(f) : L2

0(f) −→ L 2
0 (f) ,

ϑ2
1(f) : L2

1(f) −→ L 2
1 (f) ,

ϑ2
2(f) : L2

2(f) −→ L 2
2 (f) ,

where their domains have the form

22
0(f) = ∆oph+

X∧X ,

22
1(f) = ∆oph+

X∧(X∨Y ) ∧∆oph+
X∧X

∆oph+
(X∨Y )∧X ,

22
2(f) = ∆oph+

X∧Y ∧∆oph+
X∧Y ,

and their codomains have the shape

L 2
0 (f) = ∆oph+

Sym2X
,

L 2
1 (f) = ∆oph+

Sym2X
∧
(

∆oph+
Sym1X

∨∆oph+
Sym1Y

)
,

L 2
2 (f) = ∆oph+

Sym2X
∧
(

∆oph+
Sym1X

∨∆oph+
Sym1Y

)
∧∆oph+

Sym2Y
.

Proposition 4.1.9. Let f : X → Y be a morphism of pointed simplicial sheaves in

I+
proj such that X is an I+

proj-cell complex. Then for every index 0 ≤ i ≤ n, there exists

a canonical morphism

ϑni (f) : Lni (f)→ L n
i (f) ,

such that one has a commutative diagram

Ln0 (f) //

ϑn0 (f)

��

Ln1 (f) //

ϑn1 (f)

��

· · · · · · // Lnn−1(f) //

��

//

ϑnn−1(f)

��

Lnn(f)

ϑnn(f)

��
L n

0 (f) // L n
1 (f) //// · · · · · · // L n

n−1(f) //// L n
n (f)

(4.11)

where ϑn0 (f) = ϑnX and ϑnn(f) = ϑnY .

Proof. By virtue of Lemma 3.2.27, the morphism f can be expressed as the colimit

of a directed diagram {fd}d∈D of termwise coprojections of representable simplicial

sheaves. Let us fix an index 0 ≤ i ≤ n. By Lemma 4.1.7, we have canonical morphisms

ϑni (fd) : Lni (fd)→ L n
i (fd) for d ∈ D. Hence, taking colimit we get a morphism

colim d∈Dϑ
n
i (fd) : colim d∈DL

n
i (fd)→ colim d∈DL n

i (fd) ,

This morphism gives a morphism from Lni (f) to L n
i (f), and we denote it by ϑni (f).

Finally, the diagrams of the form (4.9) induce a commutative diagram of the form

(4.11).
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By virtue of Proposition 4.1.5, for each n ∈ N, we get a natural transformation

ϑn : Symn → Symn
g .

Theorem 4.1.10. The natural transformations ϑn : Symn → Symn
g , for n ∈ N induce

a morphism of λ-structures from the left derived categoric symmetric powers to the left

derived geometric powers on H∗(CNis,A1).

Proof. The natural transformations ϑn : Symn → Symn
g , for n ∈ N, induce a natural

transformation of derived functors Lϑn : LSymn → LSymn
g on H∗(CNis,A1). Hence, by

Proposition 4.1.9, the endofunctors Lϑn defines a morphism of λ-structures.

Geometric versus categoric symmetric powers

Let C be the category of quasi-projective schemes over a field k. It turns out that, if

X is the 2-dimensional affine space A2 over k, then the canonical morphism ϑnX from

SymnhX to Symn
ghX is not an A1-weak equivalence in ∆opS , see Proposition 4.1.12,.

Lemma 4.1.11. Let X be a scheme in C . The morphism of simplicial presheaf

ϑnX : SymnhX → Symn
ghX is an A1-weak equivalence if and only if for every A1-local

simplicial presheaf Z the induced morphism (ϑnX)∗ : Z (SymnX)→ Z (Xn)Σn is a weak

equivalence of simplicial sets.

Proof. By definition of A1-weak equivalence, ϑnX is an A1-weak equivalence if and only

if for every A1-local simplicial presheaf the induced morphism

(ϑnX)∗ : Map (Symn
ghX ,Z ) −→ Map (SymnhX ,Z )

is a weak equivalence of simplicial sets. On one side, we have

Map (Symn
ghX ,Z ) = Map (hSymnX ,Z ) ' Z (SymnX) ,

where the above isomorphism follows from the Yoneda’s lemma. On the other hand,

the functor Map (−,Z ) sends colimits to limits, in particular, we have

Map ((h×nX )/Σn,Z ) ' Map (h×nX ,Z )Σn .

Then, we have

Map (SymnhX ,Z ) ' Map (h×nX ,Z )Σn ' Map (hXn ,Z )Σn ' Z (Xn)Σn .

Thus, the lemma follows.

Proposition 4.1.12. Let X = A2 be the 2-dimensional affine space over a field k.

Then, the natural morphism ϑnX is not an A1-weak equivalence.
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Proof. We recall that Chow groups CH i(−), for i ∈ N, are A1-homotopy invariant (see

[9]). Then CH i(−) is A1-local as a constant simplicial presheaf. We take Z = CH1(−)

in the previous lemma. On one side, we have X2 = A4, hence CH1(X2) = CH1(A4)

is zero, see [9, p. 23]. On the other hand, Sym2(A2) is isomorphic to the product

of A2 with the quadric cone Q defined by the equation uw − v2 = 0 in A3. By the

A1-homotopy invariance, CH1(A2 × Q) is isomorphic to CH1(Q). By Example 2.1.3

of [9], CH1(Q) = CH1(Q) it is isomorphic to Z/2Z. Then (ϑ2
A2)∗ is the morphism of

constant simplicial sets induced by a morphism of sets Z/2Z→ 0. Since Z/2Z consists

of two points, the morphism (ϑ2
A2)∗ cannot be a weak equivalence. We conclude that

ϑ2
A2 is not an isomorphism in the motivic A1-homotopy category.

4.2 Stable set-up

The main result in this section is Theorem 4.2.9 which says that geometric symmet-

ric powers induce a λ-structure on the stable motivic homotopy category, under the

assumption of the existence of their left derived functors.

We set IT,proj :=
⋃
n≥0 Fn(I+

proj), where I+
proj is the set of morphisms defined in page

106. Similarly, we define a set IT ′,proj, but in this case Fn is seen as a functor from

∆opS∗ to SptT ′(k).

Our next goal is to study Künneth towers associated to relative IT,proj-cell com-

plexes, see Proposition 4.2.3.

Lemma 4.2.1. One has the following assertions:

(a) A morphism of representable T ′-spectra is isomorphic to the image of a morphism

of P1
+-spectra through the functor H ′.

(b) Let

A

��

//X

��
B // Y

(4.12)

be a cocartesian square of T ′-spectra, such that the morphism A → B is the

image of a level-termwise coprojection in SptP1
+

(∆opC+) through the functor H ′.

Then, if X is a representable T ′-spectrum, then so is Y .

(c) Consider the diagram (4.12). Suppose that A and B are compact objects. If

X is in SptT ′(∆
opC )#, then so is Y . Moreover, if X is a directed colimit of

representable T ′-spectra that are compact, then so is Y .
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Proof. (a). It is a termwise verification.

(b). Let us write A = H ′(A), B = H ′(B) and X = H ′(X), where A, B and X

are objects of SptP1
+

(∆opC+). Suppose that A → B is a morphism of the form H ′(ϕ),

where ϕ : A → B is a level-termwise coprojection in SptP1
+

(∆opC+). By item (a), the

morphism A →X is canonically isomorphic to a morphism of the form H ′(ψ), where

ψ : A → X is a morphism in SptP1
+

(∆opC+). Since ϕ is a level-termwise coprojection,

there exists an object Y in SptP1
+

(∆opC+) such that there is a cocartesian square

A

ϕ

��

ψ // X

��
B // Y

Hence, Y is isomorphic to H ′(Y ). This proves (b).

(c). It is immediate from item (b) and the fact that finite colimits of compact

objects are compact.

Lemma 4.2.2. Every IT,proj-cell complex of SptT (k) is the colimit of a directed diagram

of the form {Xd}d∈D such that, for d ≤ d′ in D, the corresponding morphism from

Xd to Xd′ is a level-termwise coprojection of compact representable T -spectra. Every

IT,proj-cell complex of SptT (k) is in SptT (∆opC )#.

Proof. We reduce the problem in showing that every IT ′,proj-cell complex of SptT ′(k)

is in SptT ′(∆
opC )#. Since an element of IT ′,proj-cell is a transfinite composition of

pushouts of element of IT ′,proj, this follows by transfinite induction in view of Lemma

4.2.1 and the fact that the domain and codomain of the elements of IT ′,proj are compact.

Proposition 4.2.3. Let f : X → Y be a morphism in IT,proj-cell, where X is an

IT,proj-cell complex. Then, for each n ∈ N, Symn
g,T (f) has a functorial Künneth tower.

Proof. By virtue of Lemma 4.2.2, one deduces that the morphism f can be expressed

as the colimit of a directed diagram {fd}d∈D of level-termwise coprojections of repre-

sentable T -spectra. Hence, by Proposition 3.3.20, the nth fold geometric symmetric

power Symn
g,T (fd) has a canonical Künneth tower

L n
0 (fd) // L n

1 (fd) // · · · // L n
n (fd) . (4.13)

For each index 0 ≤ i ≤ n, we define

L n
i (f) :=colim d∈DL n

i (fd) .

Then, we get a sequence

L n
0 (f) −→ L n

1 (f) −→ · · · −→ L n
n (f) . (4.14)
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which is a Künneth tower of Symn
g,T (f).

Lemma 4.2.4. The set IT,proj permits the small object argument.

Proof. Notice that one has to prove that for every pair (n,m) ∈ N2 and every object U

of C , the object Fm(∂∆U [n]+) is compact relative to IT,proj, see [17] for the definition of

a compact relative object. Since the category ∆opS∗ is a cellular model category with

respect to the projective-local model structure (Theorem 2.1.12) having I+
T,proj as its

set of generating cofibrations, we can follow the arguments of the proof of Proposition

A.8 in [19].

Corollary 4.2.5. There exist a functorial factorization (α, β) on SptT (k) such that

for every morphism f is factored as f = β(f) ◦ α(f), where α(f) is in IT,proj-cell and

β(f) is in IT,proj-inj.

Proof. It is a consequence of Lemma 4.2.4.

Proposition 4.2.6. Every cofibre sequence in SHT (k) is isomorphic to a cofibre se-

quence of the form

A → B → B/A ,

where A → B is in IT,proj-cell and A is an IT,proj-cell complex.

Proof. Let X → Y → Z be a cofibre sequence in SHT (k), where f is a projective

cofibration from X to Y in SptT (k), such that Z = Y /X . By Corollary 4.2.5,

the morphism ∗ → X factors into ∗ → A → X . Again, by Corollary 4.2.5, the

composition of A →X with f induces a commutative diagram

A
α(f) //

��

B

β(f)

��
X

f
// Y

where β(f) is a sectionwise trivial fibration and α(f) is in IT,proj-cell. By [18, Prop.

6.2.5], the cofibre sequence A → B → B/A is isomorphic to the cofibre sequence

X
[f ]→ Y → Z in SHT (k).

Lemma 4.2.7. For any T -spectrum X , there is an isomorphism

colimH(U)→X H(U) 'X .
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Proof. Notice that for a symmetric P1
+-spectrum U , we have that Evn(H(U)) coincides

with ∆oph+
Un

. By virtue of Lemma 3.3.3, we get canonical isomorphisms

Evn

(
colimH(U)→X H(U)

)
= colimH(U)→X ∆oph+

Un
' colim ∆oph+

V→Xn
∆oph+

V = Xn ,

which allow us to deduce the expected isomorphism.

Corollary 4.2.8. For any T -spectrum X , there is an isomorphism Sym1
g,T (X ) 'X .

Proof. For n = 1, the equalizer of diagram (3.25) is H(U). Hence, we are in the case

of Lemma 4.2.7.

Now, we are ready to state and prove our main theorem.

Theorem 4.2.9. Suppose that, for every n ∈ N, the left derived functor LSymn
T,g

exists on SHT (k). Then, the endofunctors LSymn
T,g, for n ∈ N, provides a λ-structure

on SHT (k).

Proof. We have evidently that LSym0
g,T is the constant functor with value 1. By

Corollary 4.2.8, LSym1
g,T is the identity functor on SHT (k). Let X → Y → Z

be a cofibre sequence in SHT (k) induced by a cofibration f : X → Y in SptT (k).

By Proposition 4.2.6, we can assume that f is in IT,proj-cell and X is an IT,proj-cell

complex. Hence, by Proposition 4.2.3, for each index n ∈ N, Symn
g,T (f) has a Künneth

tower,

Symn
g,T (X ) = L n

0 (f)→ L n
1 (f)→ · · · → L n

n (f) = Symn
g,T (Y ) , (4.15)

which induces a Künneth tower,

LSymn
g,T (X ) = LL n

0 (f)→ LL n
1 (f)→ · · · → LL n

n (f) = LSymn
g,T (Y ) ,

of LSymn
g,T (f). The functoriality axiom follows from the functionality of Künneth

towers of the form (4.15).

4.2.1 A morphism of lambda-structures

For a symmetric T -spectrum X , we shall construct a natural morphism ϑnX from

Symn
T (X ) to Symn

g,T (X ). The main result is Theorem 4.2.13.

Proposition 4.2.10. Let X be an object in SptT (k) and let n ∈ N. Then, we have a

canonical morphism ϑnX : Symn
T (X )→ Symn

g,T (X ).

185



Proof. We define ϑnX to be the colimit of the morphisms ϑnH(U) of Lemma 3.3.2, where

H(U) → X runs on the objects of the comma category (H ↓ X ). By definition

Symn
g,TX = colimH(U)→X Symn

g,TH(U). It remains to show that there is a canonical

isomorphism Symn
TX = colimH(U)→X Symn

TH(U). Notice the Cartesian product of

∆opC induces a Cartesian product on category (H ↓ X ). By Lemma 3.2.11 and

Lemma 4.2.7, we deduce an isomorphism X ∧n ' colimH(U)→X H(U)∧n. By the same

argument, we deduce that the product X ∧ sym(T )∧X ∧ · · · ∧ sym(T )∧X , in which

the object X appears n times, is isomorphic to the colimit

colimH(U)→X

(
H(U) ∧ sym(T ) ∧H(U) ∧ · · · ∧ sym(T ) ∧H(U)

)
.

By change of colimits and by the above considerations, we deduce that the colimit of

the diagram(
X ∧ sym(T ) ∧X ∧ · · · ∧ sym(T ) ∧X

)/
Σn

//

//

//

//

//
//· · · · · · X ∧n/Σn

is a double colimit, that is, the colimit of the colimits of diagrams of the form(
H(U) ∧ sym(T ) ∧H(U) ∧ · · · ∧ sym(T ) ∧H(U)

)/
Σn

//

//

//

//

//
//· · · · · · H(U)∧n/Σn ,

where H(U) → X runs on the objects of (H ↓ X ). This implies that Symn
TX is

isomorphic to colimH(U)→X Symn
TH(U).

For each n ∈ N, we denote by ϑn : Symn
T → Symn

g,T the natural transformation de-

fined for every pointed simplicial sheaf X to be the functorial morphism ϑn(X ) :=ϑnX .

Lemma 4.2.11. Let ϕ : X → Y be a level-termwise coprojection in SptP1
+

(∆opC+) and

let us write f :=H(ϕ). Then, for every pair of numbers (n, i) ∈ N2 with 0 ≤ i ≤ n,

there exists a canonical morphism

ϑni (f) : Lni (f)→ L n
i (f) ,

such that one has a commutative diagram

Ln0 (f) //

ϑn0 (f)

��

Ln1 (f) //

ϑn1 (f)

��

· · · · · · // Lnn−1(f) //

��

//

ϑnn−1(f)

��

Lnn(f)

ϑnn(f)

��
L n

0 (f) // L n
1 (f) //// · · · · · · // L n

n−1(f) //// L n
n (f)

(4.16)

Proof. Let us fix a natural number n. For each index 0 ≤ i ≤ n, L n
i (f) is nothing

but the object H(2̃n
i (ϕ)), see Proposition 3.3.20. Since the functor H is monoidal,

2n
i (f) is canonically isomorphic to H(2n

i (ϕ)). Thus, we have a canonical morphism

2n
i (f) → L n

i (f), and this morphism induces a morphism ϑni (f) : Lni (f) → L n
i (f).

Since ϑni (f) is constructed canonically, we get a commutative diagram (4.16).
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Proposition 4.2.12. Let f : X → Y be a morphism of T -spectra in IT,proj such that

X is an IT,proj-cell complex. Then, for every index 0 ≤ i ≤ n, there exists a canonical

morphism

ϑni (f) : Lni (f)→ L n
i (f) ,

such that one has a commutative diagram

Ln0 (f) //

ϑn0 (f)

��

Ln1 (f) //

ϑn1 (f)

��

· · · · · · // Lnn−1(f) //

��

//

ϑnn−1(f)

��

Lnn(f)

ϑnn(f)

��
L n

0 (f) // L n
1 (f) //// · · · · · · // L n

n−1(f) //// L n
n (f)

(4.17)

where ϑn0 (f) = ϑnX and ϑnn(f) = ϑnY .

Proof. As in Proposition 4.2.3, the morphism f can be expressed as the colimit of a

directed diagram {fd}d∈D of morphisms of representable T -spectra. Let us fix an index

0 ≤ i ≤ n. By Lemma 4.2.11, we have canonical morphisms ϑni (fd) : Lni (fd)→ L n
i (fd)

for d ∈ D. Hence, taking colimit we get a morphism

colim d∈Dϑ
n
i (fd) : colim d∈DL

n
i (fd)→ colim d∈DL n

i (fd) ,

This morphism gives a morphism from Lni (f) to L n
i (f), and we denote it by ϑni (f).

Finally, the diagrams of the form (4.16) induce a commutative diagram of the form

(4.17).

Theorem 4.2.13. Suppose that, for every n ∈ N, the left derived functor of Symn
g,T

exists on SHT (k). Then, the natural transformations ϑn : Symn
T → Symn

g,T , for n ∈ N,

induce a morphism of λ-structures from the left derived categoric symmetric powers to

the left derived geometric powers on SHT (k).

Proof. It follows from Proposition 4.2.12 and Proposition 4.2.6.

4.3 Comparison of symmetric powers

The main result in this section is Theorem 4.3.20, which asserts that if −1 is a sum

of squares, then the categoric, geometric and projector symmetric powers of a quasi-

projective scheme are isomorphic in SHT (k)Q.
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4.3.1 Formalism of transfers

The purpose of this section is to study the notion of transfer of morphisms in a cat-

egorical context involving the transfers that appear in topology, in homotopy theory,

and in the theory of pure motives and Voevodsky’s motives.

In the next paragraphs (D ,∧) and (E ,⊗) will be two symmetric monoidal categories,

where E is an additive category. Let

E : (D ,∧)→ (E ,⊗)

be a monoidal functor. Let us fix a finite group G and suppose that X is a G-object

in D with a representation ρX : G → Aut(X) of G on X. The functor E induces

an homomorphism of groups Aut(X) → AutE(X). Notice that the composition of

this homomorphism with ρX gives an homomorphism of groups G→ AutE(X), hence

G acts on E(X). This homomorphism induces an homomorphism of Abelian groups

Z[G]→ EndE(X).

Definition 4.3.1. The norm NmE(X) of E(X) is the image of the element
∑

g∈G g

under this map. Explicitly, it is given by the formula

NmE(X) =
∑
g∈G

E(ρX(g)) .

Now, suppose that the quotient X/G exists in D and let π : X → X/G be the

canonical morphism.

Definition 4.3.2. The transfer morphism, or simply, the transfer of E(π) is a mor-

phism

trE(π) : E(X/G)→ E(X) ,

such that E(π) ◦ trE(π) = n · idE(X/G) and trE(π) ◦ E(π) = NmE(X).

Example 4.3.3. Consider (D ,∧) to be the category of quasi-projective schemes over

a field k together with the Cartesian product of schemes over k, and consider (E ,⊗)

to be the category of qfh-sheaves together with the Cartesian product of sheaves. For

every n ∈ N and for every quasi-projective k-scheme X, the canonical morphism from

Zqfh(Xn) to Zqfh(SymnX) has transfer, see Proposition 4.3.11.

The following example is a consequence of the previous one.

Example 4.3.4. If (D ,∧) is the same category as in the previous example, and if (E ,⊗)

is the category of qfh-motives together with the monoidal product of qfh-motives [39],

then the canonical morphism of qfh-motives Mqfh(Xn)→Mqfh(SymnX) has transfer.
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Let us study the case when G is the symmetric group Σn acting of the nth fold

product X∧n of an object X of D . Since E is monoidal we have an isomorphism

E(X∧n) ' E(X)⊗n .

Assume that the quotient E(X)⊗n/Σn exists in E and let % : E(X∧n)→ E(X)⊗n/Σn be

the composition of the isomorphism E(X∧n) ' E(X)⊗n with the canonical morphism

E(X)⊗n → E(X)⊗n/Σn. One has a commutative diagram

E(X∧n)

σ

��

%

''NNNNNNNNNNN E(π)

''
E(X)⊗n/Σn

u // E(X∧n/Σn)

E(X∧n)

%

77ppppppppppp
E(π)

77

(4.18)

where the dotted arrow exists by the universal property of quotient by Σn. Let us keep

these considerations for the proof of Proposition 4.3.5.

A Q-linear category is a category enriched over the category of Q-vector spaces.

Proposition 4.3.5. Suppose E : (D ,∧)→ (E ,⊗) is a monoidal functor of symmetric

monoidal categories, where E is also a Q-linear category. Let X be an object of D , and

assume that X∧n/Σn exists in D and E(X)⊗n/Σn exists in E . Let π : X∧n → X∧n/Σn

be the canonical morphism, and suppose that E(π) is an epimorphism and has a transfer

trE(π). Then, the universal morphism

u : E(X)⊗n/Σn → E(X∧n/Σn)

is an isomorphism.

Proof. Let consider the diagram (4.18). Set ξ :=% ◦ trE(π). We have

ξ ◦ u ◦ % = % ◦ trE(π) ◦ u ◦ %

= % ◦ trE(π) ◦ E(π)

= % ◦NmE(X)

= n! · % .

(4.19)

Hence, ξ ◦ u ◦ % = n! · %. From the universal property of E(X)⊗n/Σn, one deduces that

% is an epimorphism. This implies the equality ξ ◦ u = n! · id. On the other hand, we

have

u ◦
(

1

n!
· ξ
)
◦ E(π) = u ◦

( 1

n!
· % ◦ trE(π)

)
◦ E(π)

=
1

n!
·
(
E(π) ◦ trE(π) ◦ E(π)

)
=

1

n!
·
(
n! · E(π)

)
= E(π) .

(4.20)
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It follows that u ◦ (1/n! · ξ) ◦ E(π) = E(π). By assumption E(π) is an epimorphism.

Therefore, we get u◦ (1/n! · ξ) = id and conclude that u is an isomorphism with inverse

1/n! · ξ.

Remark 4.3.6. In the previous proposition it is enough to assume that E is a Z[ 1
n! ]-

linear category.

Projector symmetric powers

Let (T ,⊗) be a Q-linear symmetric monoidal triangulated category. We fix an object

X of T . For a positive integer n, we have a representation ρX⊗n : Σn → Aut(X⊗n) of

Σn on X⊗n induced by permutation of factors. Set

dn :=
1

n!
·Nm(X⊗n) =

1

n!
·
∑
σ∈Σn

ρX⊗n(σ) .

This endomorphism is nothing but that the image of the symmetrization projector

1/n!·
∑

σ∈Σn
σ under the induced Q-linear map Q[Σn]→ End(X⊗n). Since the category

T is a Q-linear triangulated category with small coproducts, it is a pseudo-abelian

category, see [31]. As dn is idempotent, i.e. dn ◦ dn = dn, it splits in T . This implies

that p has an image in T .

Definition 4.3.7. We write

Symn
pr(X) :=im dn ,

and call it the nth fold projector symmetric power of X.

By convention, for n = 0, Symn
pr(X) will be the unit object T .

Example 4.3.8. Let DM−(k,Q) be the Voevodsky’s category with rational coefficients

over a field k [27]. A k-rational point of smooth projective curve C induces a decom-

position of the motive M(C) into Q ⊕M1(C) ⊕ Q(1)[2] in DM−(k,Q). The nth fold

projector symmetric power Symn
pr(M

1(C)) vanishes for n sufficiently bigger that 2g,

where g is the genus of C.

We recall that a stable model category (Definition 1.3.17) is called Q-linear, if its

homotopy category is a Q-linear triangulated category.

Proposition 4.3.9. Let D be a simplicial symmetric monoidal Q-linear stable model

category [6]. Then, the projector symmetric powers Symn
pr, for all n ∈ N, induce a

λ-structure on Ho (D).
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Proof. By convention Sym0
pr is the constant endofunctor whose value is the unit object

of Ho (C ). From the definition, the endofunctor Sym1
pr is the identity on Ho (C ). Let

X → Y → Z be a cofibre sequence in Ho (C ). By [14, Proposition 15], there exists a

sequence

Symn
pr(X) = A0 → A1 → · · · → An = Symn

pr(Y ) (4.21)

in Ho (C ), such that for each 0 ≤ i ≤ n, we have

cone(Ai−1 → Ai) = Symn−i
pr (X)⊗ Symi

pr(Z) ,

where A−1 = 0. Thus, the Künneth tower axiom is satisfied. The functorial axiom

on cofibre sequences follows from the functorial construction of the sequences of the

form(4.21), see loc.cit.

Let τ be a Grothendieck topology on an admissible category C . We denote by

Zτ (−) : Shvτ (C )→ Abτ (C )

the functor which sends a sheaf F in Shvτ (C ) to the Abelian sheaf Zτ (F ) freely gen-

erated by F . Denote by

Qτ (−) : Shvτ (C )→ Abτ (C )⊗Q

the composition of the functor Zτ (−) with the canonical functorAbτ (C )→ Abτ (C )⊗Q.

Notice that Abτ (C ) ⊗ Q is identified with the category of sheaves of Q-vector spaces.

For an object X of C , we shall often write Zτ (X) instead of Zτ (hX). Similarly, we

write Qτ (X) instead of Qτ (hX).

Lemma 4.3.10 (Voevodsky). Let X be a quasi-projective k-scheme and let π be the

canonical morphism from Xn onto Symn(X). Suppose F is a qfh-sheaf of Abelian

monoids on the category of k-schemes of finite type, and let

π∗ : F (Symn(X))→ F (Xn)

be the restriction morphism induced by π. Then the image of π∗ coincides with F (Xn)Σn.

Proof. As the morphism π forms a qfh-covering of Symn(X), we follow the arguments

of the proof of [39, Prop. 3.3.2] or [37, Lemma 5.16].

Proposition 4.3.11. Let X be a quasi-projective k-scheme and let π : Xn → Symn(X)

be the canonical morphism for an integer n ≥ 1. Then, the induced morphism

Zqfh(π) : Zqfh(Xn)→ Zqfh(SymnX)
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has transfer, i.e. there exists a morphism tr(π) such that

Zqfh(π) ◦ tr(π) =
∑
σ

Zqfh(σ), and (4.22)

Zqfh(π) ◦ tr(π) = n! · idZqfh(SymnX) . (4.23)

Proof. Let us consider the representable qfh-sheaf F = Zqfh(Xn). Every permutation σ

in Σn induces an automorphism σ : Xn → Xn by permuting factors, σ corresponds to an

element of F (Xn), denoted by the same letter. Notice that the element θn :=
∑

σ∈Σn
σ

is an element of F (Xn) which is Σn-invariant, i.e. σ(θn) = θ for all permutation σ ∈ Σn.

By Lemma 4.3.10, there exists an element tn of F (SymnX) such that tn ◦ π∗ = θ. We

denote by tr(π) : Zqfh(Symn) → Zqfh(Xn) the morphism of qfh-sheaves corresponding

to the section tn. Then the equality tn ◦ π∗ = θ gives the equality (4.22). Now, from

(4.22), we have

Zqfh(π) ◦ tr(π) ◦ Zqfh(π) =

(∑
σ

Zqfh(σ)

)
◦ Zqfh(π)

=
∑
σ

Zqfh(σ) ◦ Zqfh(π)

=
∑
σ

Zqfh(π)

= n! · Zqfh(π) .

hence, Zqfh(π) ◦ tr(π) ◦ Zqfh(π) = n! · Zqfh(π). This induces the equality (4.23).

Lemma 4.3.12. For every object X object in an admissible category, we have canonical

isomorphisms

Zqfh(X)⊗n/Σn ' Z(SymnhX) ,

Qqfh(X)⊗n/Σn ' Q(SymnhX) .

Proof. These equalities follow since both Zqfh(−) and Qqfh(−) are monoidal and left

adjoint functors.

Corollary 4.3.13. Let X be a quasi-projective k-scheme. Then, the canonical mor-

phism Qqfh(SymnhX) → Qqfh(Symn
ghX) is an isomorphism of qfh-sheaves of Q-vector

spaces.

Proof. Let π : Xn → Symn(X) be the canonical morphism. By Proposition 4.3.11,

the morphism Zqfh(π) : Zqfh(X)⊗n → Zqfh(SymnX) has transfer, then the morphism

Qqfh(π) : Qqfh(X)⊗n → Qqfh(SymnX) has also transfer. Notice that Qqfh(π) is an epi-

morphism. Hence, by Proposition 4.3.5, the morphism Qqfh(π) induces an isomorphism

Qqfh(X)⊗n/Σn → Qqfh(SymnX) .

Finally, by Lemma 4.3.12, Qqfh(X)⊗n/Σn is isomorphic to Qqfh(SymnhX), and by def-

inition, Qqfh(SymnX) is equal to Qqfh(Symn
ghX) .
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Corollary 4.3.14. Let X be a quasi-projective k-scheme. Then the morphism from

Qqfh(SymnhX) to Qqfh(Symn
ghX) is an isomorphism in DMqfh(k)Q.

Proof. It follows from Corollary 4.3.13 and [6, Prop. 5.3.37].

Let

Mqfh,Q : Sch/k → DMqfh(k)Q

be the canonical functor from the category of k-schemes Sch/k of finite type to

DMqfh(k)Q.

Corollary 4.3.15. Let X be a quasi-projective k-scheme and let π : Xn → Symn(X)

be the canonical morphism. Then the morphism Mqfh,Q(π) has transfer.

Proof. It follows from Proposition 4.3.11.

Let EQ be the canonical functor from the category of k-schemes of finite type to

SHT (k)Q.

Corollary 4.3.16. Suppose that −1 is a sum of squares in a field k. For a quasi-

projective k-scheme X, the induced morphism EQ(π) from EQ(Xn) to EQ(SymnX) has

transfer.

Proof. It follows from Corollary 4.3.15 and Corollary 2.4.3.

Proposition 4.3.17. Assume −1 is a sum of squares in a field k. For a quasi-projective

k-scheme X, one has an isomorphism

Symn
prEQ(X) ' EQ(SymnX) .

Proof. By Corollary 4.3.16, the morphism EQ(π) has transfer, say trQ(π). From the

equality trQ(π) ◦ EQ(π) = Nm(EQ(X)), we obtain that the projector dn is equal to

1/n! · trQ(π) ◦ EQ(π). Hence, from the equality E(π) ◦ trQ(π) = n!.id, we deduce that

im dn ' EQ(SymnX).

Remark 4.3.18. All the results of this section are also valid in the stable motivic

homotopy category with Z[ 1
n! ]-coefficients for a fixed natural number n.
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4.3.2 Main theorem

In the next paragraphs we shall prove our main theorem which states that for a k-

scheme in C , the canonical morphism from LSymn
TEQ(X) to LSymn

g,TEQ(X) is an

isomorphism in the stable A1-homotopy category on C . We recall that SHT (k) is the

stable homotopy category of schemes over a field k constructed in [22].

Proposition 4.3.19. Suppose that −1 is a sum of squares in k. For every quasi-

projective k-scheme X, the canonical morphism

Symn
T (Σ∞T X+)→ Σ∞T (SymnX)+

is a stable rational A1-weak equivalence.

Proof. By Lemma 3.3.6, the morphism Symn
T (Σ∞T X+)→ Σ∞T (SymnX)+ is isomorphic

to the T -suspension of the canonical morphism Symn
T (hX+)→ Symn

g,T (hX+) of pointed

simplicial sheaves. Hence the proposition follows from Corollary 4.3.14 and Corolary

2.4.3.

Next, we compare the three types of symmetric powers in the stable rational ho-

motopy category of schemes over a field. More precisely, the left derived functors of

the categoric, geometric and homotopy symmetric powers of a suspension of a repre-

sentable sheaf coincide. We recall that EQ is the canonical functor from the category

of k-schemes of finite type to SHT (k)Q.

Theorem 4.3.20. Suppose that −1 is a sum of squares in a field k. For any quasi-

projective k-scheme X, we have the following isomorphisms

LSymn
TEQ(X) ' EQ(SymnX) ' Symn

prEQ(X) .

Proof. The isomorphism on the left-hand side follows from Proposition 4.3.19. The

second isomorphism follows from Proposition 4.3.17.

Let us consider the sets I+
T =

⋃
n>0 Fn(I), J+

T =
⋃
n>0 Fn(J), where I (resp. J) is

the class of generating (resp. trivial) cofibrations of the injective model structure of

∆opS∗. Denote by W+
T the class of morphisms of symmetric T -spectra f : X → Y

such that each term fn : Xn → Yn is an A1-weak equivalence for n > 0. The sets I+
T ,

J+
T and the class W+

T define on SptT (k) a cofibrantly generated model structure called

positive projective model structure, see [13]. The positive projective cofibrations are

projective cofibrations that are isomorphisms in the level zero.

For a T -spectrum X in SptT (k), the nth fold homotopy symmetric power Symn
h,T (X )

is defined as the homotopy colimit hocolimΣnX
∧n. The Borel construction allows one
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to express Symn
h,T (X ) as the homotopy quotient (EΣn)+ ∧Σn X ∧n, where EΣn is

the Σn-universal principal bundle, see Definition 1.2.24. The canonical morphism from

(EΣn)+ ∧X ∧n to X ∧n induces a morphism

Symn
h,T (X )→ Symn

T (X ) ,

which is a stable A1-weak equivalence when X is a cofibrant T -spectrum with respect

to the positive projective model structure. This implies the existence of an isomorphism

of endofunctors

Symn
h,T (X )

∼−→ LSymn
T (4.24)

on stable A1-homotopy category SHT (k), see [12].

Remark 4.3.21. By Theorem 4.3.20 and (4.24), we get the following isomorphisms

Symn
h,TEQ(X) ' LSymn

TEQ(X) ' EQ(SymnX) ' Symn
prEQ(X)

for any quasi-projective k-scheme X.

Example 4.3.22. Let X be the 2-dimensional affine space A2 over k. Then, by Propo-

sition 4.1.12, the canonical morphism LϑX : LSymnhX ' LSymn
ghX is not an isomor-

phism in the unstable motivic category over k. However, by Theorem 4.3.20, ϑX induces

an isomorphism LSymn
TEQ(X) ' EQ(Symn

gX) .
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Appendix A

Transfers

The notion of transfer appears in several contexts in mathematics. For instance, in

topology one has the notion of transfer associated to a finite covering of topologi-

cal spaces p : X → S, that is, if p∗ : H∗(X,Z) → H∗(Y,Z) is the corresponding

homomorphism of singular homologies, then the transfer of p is a homomorphism

tr(p) : H∗(Y,Z) → H∗(X,Z) such that the composition p∗ ◦ tr(p) is the multiplica-

tion map by the degree of p.

In [39], Voevodsky proves the existence of transfers in the category of qfh-sheaves

and in the category of triangulated motives. More precisely, if p : X → S is a finite

morphism of separable degree d, where S is a normal connected scheme, then there is

a morphism of sheaves in the qfh-topology, called transfer,

tr(p) : Zqfh(X)→ Zqfh(S) ,

such that Zqfh(p) ◦ tr(p) = d · idZqfh(X). A generalization of this result says that, if

F is any qfh-sheaf and p is the same as before, then there exists a transfer morphism

tr(p) : F (X)→ F (S) satisfying the equality tr(p) ◦ p∗ = d · idF (S), see [37].

qfh-Topologies

Definition A.0.23. We recall that a morphism of schemes p : X → Y is called a

topological epimorphism if p is surjective and a subset A is Zariski open in Y if and

only if p−1(A) is Zariski open in X. A topological epimorphism p : X → Y is universal

if for any morphism Y ′ → Y the projection Y ′×Y X → Y is a topological epimorphism.

An h-covering of a scheme X is a finite family {pi : Xi → X}i∈I of morphisms of finite

type such that the induced morphism qi∈Ipi :
∐
i∈I Xi → X is a universal topological

epimorphism. A qfh-covering of X is a h-covering {pi : Xi → X}i∈I such that pi is

quasi-finite for all i ∈ I (see [39]).

Example A.0.24. Let p : X → Y be a morphism of schemes. The family with one

element {p : X → Y } is a qfh-covering of Y for instance if:
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(1) p is a surjective proper morphism of finite type, or

(2) Y is the quotient scheme X/G, where G is a finite group acting on X, and

p : X → Y is the canonical morphism.

In the next paragraphs, all qfh-sheaves are defined on the category of schemes of

finite type over a field k.

Definition A.0.25. Let X be an integral scheme and let E/k(X) be a field extension.

We say that X is integrally closed in E, if the local rings of X are integrally closed in

E at every point of X.

Proposition A.0.26. Let X be an integral scheme and let E/k(X) be a finite field

extension. Then there exists a scheme X ′ and a morphism X ′ → X with the following

universal property: For any dominant morphism f : Z → X, where Z is integrally

closed in E, the morphism f factors uniquely through X ′.

Proof. Ones uses gluing of schemes to construct X ′.

Definition A.0.27. The scheme X ′ in the previous proposition is called normalization

of X in E.

Lemma A.0.28. Let q : X → S be a finite morphism and let G be a finite group acting

on X/S. The following statements are equivalent:

(a) For any point s ∈ S, the action of G on the fibre q−1(s) is transitive. Moreover,

for any point x ∈ q−1(s) the field extension k(x)/k(s) is normal and the natural

homomorphism

stabG(x)→ Gal(k(x)/k(s))

is surjective.

(b) For any algebraically closed field Ω and for any geometric point η : Spec(Ω)→ S,

the action of G on the geometric fibre Xη = X ×S Spec(Ω) is transitive.

Proof. See [37, Lemma 5.1].

Pseudo- Galois coverings

For a scheme X/S, we write AutS(X) to denote the group of automorphisms of X over

S.

Definition A.0.29. Let p : X → S be a finite surjective morphism of integral schemes.

We say that p is a pseudo-Galois covering if its associated field extension k(X)/k(S) is

normal and canonical homomorphism of groups

AutS(X)→ Gal(k(X)/k(S))

is an isomorphism.
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Lemma A.0.30. If S is an integral scheme and Y → S is the normalization of S in

a finite normal extension of the field k(S), then Y → S is a pseudo-Galois covering.

Proof. See [37].

Lemma A.0.31. Let q : Y → S be a pseudo-Galois covering of an integral normal

scheme S, and put G = AutS(Y ).

(a) If F is a qfh-sheaf of Abelian groups, then the restriction morphism q∗ from

F (S) to F (Y ) induces an isomorphism F (S)
∼−→ F (Y )G.

(b) If f : F → F ′ is a morphism of qfh-sheaves, then we have a commutative diagram

F (S) //

��

F (Y )G

��
F ′(S) // F ′(Y )G

where the horizontal arrows are isomorphisms.

Proof. (a). For every φ ∈ G, we consider the universal morphism fφ : Y → Y ×S Y
coming from the following pullback diagram

Y

idY

��

φ

&&

fφ

""
Y ×S Y

��

// Y

q

��
Y q

// S

Hence the morphisms fφ, for φ ∈ G, induce a morphism f :
∐
φ∈G Y → Y ×S Y .

Observe that the hypothesis implies that f is finite and surjective, hence {f} a qfh-

covering. Since the sheaf F is, in particular, separated and {f} a qfh-covering, the

restriction homomorphism

f∗ : F (Y ×S Y )→ F

∐
φ∈G

Y

 = F (Y )×G

is injective. Since {q} is a qfh-covering, we have an equalizer diagram

F (S)
q∗ // F (Y )

pr∗1 //

pr∗2

// F (Y ×S Y ) .
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Notice that F (Y )G is the equalizer of the diagram

F (Y )
f∗◦pr∗1 //

f∗◦pr∗2

// F (Y )×G .

On the other hand, as f∗ is injective, the F (S) is also the equalizer of this diagram.

Therefore, we have an isomorphism F (S)
∼−→ F (Y )G.

(b). It follows from the universal property of equalizer.

Transfers

Here, we review some results from [37] and [39] on transfers of qfh-sheaves.

Theorem A.0.32. Let p : X → S be a finite morphism of separable degree n, where Y

is a normal connected scheme and let F be a qfh-sheaf of abelian groups. Then there

is a morphism

tr(p) : F (X)→ F (S) ,

such that tr(p) ◦ p∗ = idF (S).

Proof. We choose a normalization q : Y → S in a finite normal extension of the field

k(S). We set G = AutS(Y ). By Lemma A.0.30, q : Y → S is a pseudo-Galois

covering, hence by Lemma A.0.31, restriction morphism q∗ : F (S) → F (X) induces

an isomorphism q∗ : F (S)
∼−→ F (X)G. On the other hand, we consider a morphism∑
ψ∈HomS(Y,X)

ψ∗ : F (X)→ F (Y )

which will denoted simply by
∑
ψ∗. Notice that, any φ ∈ G induces a bijection

HomS(Y,X)→ HomS(Y,X)

given by ψ 7→ φ ◦ ψ, then the morphism
∑
ψ∗ is G-invariant; indeed, ∑

ψ∈HomS(Y,X)

ψ∗

 ◦ φ∗ =
∑

ψ∈HomS(Y,X)

(φ ◦ ψ)∗ =
∑

ψ∈HomS(Y,X)

ψ∗

for all φ ∈ G. Hence, the morphism
∑
ψ∗ : F (X) → F (Y ) factors through F (Y )G.

Then we define tr(p) : F (X)→ F (S) to be the composite

F (X)
∑
ψ∗−→ F (Y )G

(p∗)−1

−→ F (S) .

It remains to verify that tr(p) ◦ p∗ = idF (S). Notice that it is enough to see that

(
∑
ψ∗) ◦ p∗ = n · p∗. Indeed, one has the equalities ∑

ψ∈HomS(Y,X)

ψ∗

 ◦ p∗ =
∑

ψ∈HomS(Y,X)

(p ◦ ψ)∗ =
∑

ψ∈HomS(Y,X)

q∗ = n · q∗ ,

as required.
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Theorem A.0.33. Let p : X → S be a finite morphism of separable degree n, where Y

is a normal connected scheme. Then there is a morphism of sheaves in the qfh-topology

tr(p) : Zqfh(S)→ Zqfh(X) ,

such that Zqfh(p) ◦ tr(p) = n · idZqfh(S).

Proof. First of all, notice that for any g ∈ G, the map HomS(Y,X) → HomS(Y,X)

defined by ψ 7→ ψ ◦ g, is bijective, and the element∑
φ∈HomS(Y,X)

Zqfh(φ)

of Zqfh(X)(Y ) is G-invariant. We have

Zqfh(p) ◦

 ∑
φ∈HomS(Y,X)

Zqfh(φ)

 =
∑

φ∈HomS(Y,X)

Zqfh(p ◦ φ)

=
∑

φ∈HomS(Y,X)

Zqfh(q)

= n · Zqfh(q)

Now, let us consider the morphism Zqfh(p) : Zqfh(X)→ Zqfh(S). By Lemma A.0.31(b)

applied to the morphism q : Y → S, we have a commutative diagram

Zqfh(X)(S) //

Zqfh(p)(S)

��

Zqfh(X)(Y )G

Zqfh(p)(Y )G

��
Zqfh(S)(S) // Zqfh(S)(Y )G

where the horizontal arrows are isomorphisms by Theorem A.0.32. Notice that Zqfh(p)(Y )

sends
∑

φ∈HomS(Y,X) Zqfh(φ) to Zqfh(p) ◦
(∑

φ∈HomS(Y,X) Zqfh(φ)
)

which is equal to

n · Zqfh(q). By the above commutative diagram we deduce the equality

Zqfh(p) ◦ tr(p) = n · idZqfh(S)

as required.

Let DMqfh(S) be the category of motives with respect to the qfh-topology and let

Mqfh : Sch/S → DMqfh(S)

be the canonical functor.

Corollary A.0.34. Let p : Y → X be a finite surjective morphism of normal connected

schemes of separable degree n > 0. Then there is a morphism

tr(p) : Mqfh(X)→Mqfh(Y )

such that Mqfh(p) ◦ tr(p) = n · idMqfh(X).

Proof. See [39, Proposition 4.1.4].
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Appendix B

Further research

A fascinating future research project is to investigate what would be an appropriate

motivic version of the celebrated Barrat-Priddy-Quillen theorem, see [2]. This idea was

suggested by Vladimir Guletskĭı.

In topology, the Barratt-Priddy-Quillen theorem establishes a weak equivalence

BΣ∧∞ ' QS0 ,

where the left hand side is the homotopy completion of the classifying space of the

infinite symmetric group Σ∞, and

QS0 = hocolimnΩnΣnS0

is the space representing stable homotopy groups of spheres. It can be also reformulated

by saying that QS0 is homotopy equivalent to Z×BΣ+
∞, where + denotes the Quillen

plus construction. If πsn is the nth stable homotopy group of spheres, see [15, page 384],

then the Barrat-Priddy-Quillen theorem implies an isomorphism,

πn(BΣ∧∞) ' πsn .

On the hand, Schlichtkrull proved in [36] a theorem related to the Barratt-Priddy-

Quillen theorem. His result asserts that for any based CW-complex X, there is a

chain of homotopy equivalences between the group completion of the infinite homotopy

symmetric power Sym∞h (X) and the space Q(X) = hocolimnΩnΣnX, see Theorem 1.3

in loc.cit.

Now, let us consider the Schlichtkrull’s method in the context of the A1-homotopy

theory of schemes. For a pointed motivic space X , let Qs(X ) be the homotopy colimit

Qs(X ) = hocolimnΩn
sΣn

sX ,

where Ωs and Σs are the simplicial loop and suspension functors of motivic spaces,

see [30]. We denote by Sym∞h (X ) the colimit of nth fold homotopy symmetric powers

Symn
h(X ) for n ∈ N. A possible statement of a motivic Barratt-Priddy-Quillen theorem

might read as follows:
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Let X be a pointed motivic space. Then the group completion of the infinite

symmetric power Sym∞h (X ) is A1-weak equivalent to the space Qs(X ) in the

unstable motivic category of schemes over a field.

Let B Sym∞h (X ) be the classifying space of Sym∞h (X ), see [30]. Schlichtkrull’s

method suggests that the above statement might follow from three independent A1-

weak equivalences of the form:

(A) Sym∞h (ΣsX ) ' B Sym∞h (X ),

(B) ΩsSym∞h (ΣsX ) ' hocolimnΩn
s Sym∞h (Σn

sX ),

(C) Qs(X ) ' hocolimnΩn
s Sym∞h (Σn

sX ).

We leave these questions for a future work.
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finite relative, 10

finite simplicial set, 84

free functor, 48

functor

evaluation, 47, 55

free, 48

functorial factorization, 2

geometric symmetric power, 111, 149

homotopic morphisms, 87

homotopy, 86

left, 18

right, 19

homotopy cartesian square, 27

homotopy category, 15

homotopy cocartesian square, 27

homotopy colimit, 26

homotopy equivalence, 87

homotopy symmetric power, 27

integrally closed scheme, 200

Joyal’s trick, 14

Künneth tower, 129, 130

Ken Brown’s lemma, 5

left derived functor, 20

left homotopy, 18

left lifting property, 3

left Quillen functor, 20

level-termwise coprojection, 159

local simplicial sheaf , 105

local weak equivalence, 68

localization, 14

loop functor, 29

module over a monoid, 51

monoid, 51

morphism

fold, 17

of symmetric spectra, 53

morphism

of λ-structures, 174

motivic Hurewicz functor, 117

Nisnevich covering, 102

norm, 188

ordered set, 7

ordinal, 8

partial order, 7

path object, 18

permits the small object argument, 11

pre-triangulated category, 38

pre-triangulation, 35

preorder, 7

preordered set, 7

product of symmetric sequences, 49

projector symmetric power, 190

pseudo-Galois covering, 200

pushout-product, 121

Quillen adjunction, 20

Quillen equivalence, 21

radditive functor, 69

radditivization functor, 83

rational stable A1-weak equivalence, 117

Recognition theorem, 13

reflexive coequalizer, 74

reflexive diagram, 74

regular cardinal, 9

relative I-cell complex, 10

replacement functor, 15

representable simplicial sheaf, 144

representable spectrum, 158

restriction functor, 45

retract, 2

right derived functor, 20

right homotopy, 19
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right lifting property, 3

right Quillen functor, 20

sectionwise cofibration, 68

sectionwise fibration, 68

sectionwise weak equivalence, 68

set of generating Nisnevich equivalences,

109

simplicial bar construction, 26

simplicial category, 22

simplicial classifying space, 26

simplicial model category, 22

small object, 10

space functor, 22

special cofibre sequence, 32

special fibre sequence, 32

stabilizer, 109

stable A1-weak equivalence, 116

stable geometric symmetric power, 153

stable model structure, 62

stable weak equivalence, 62

strict localization, 113

suspension functor, 29, 114

symmetric sequence, 47

symmetric spectrum, 53

symmetrizable cofibration, 134

symmetrizable trivial cofibration, 134

termwise coprojection, 90

topological epimorphism, 199

torsion object, 116

total left derived functor, 21

totally ordered set, 7

transfer, 188

transfinite composition, 9

transitive set, 7

triangulated category, 39

uniquely divisible object, 116

universal principal bundle, 26

universal topological epimorphism, 199

weak equivalence, 3

stable, 62

weak generators, 44

well-ordered set, 7

Whitehead’s theorem, 19
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